Graph Signal Processing and Applications

Antonio Ortega

Signal and Image Processing Institute
Department of Electrical Engineering
University of Southern California
Los Angeles, California

National Institute of Informatics (NII)
Tokyo, Japan

Nov. 12, 2014
Acknowledgements

- **Collaborators**
 - **Dr. Sunil Narang** (Microsoft), **Dr. Godwin Shen** (Northrop-Grumman), **Dr. Eduardo Martínez Enríquez** (Univ. Carlos III, Madrid)
 - **Akshay Gadde, Jessie Chao, Aamir Anis, Yongzhe Wang, Eduardo Pávez, Hilmi Egilmez** (USC)
 - Prof. Marco Levorato (UCI), Prof. Urbashi Mitra (USC)
 - Prof. Fernando Díaz de María (Univ. Carlos III, Madrid), Prof. Gene Cheung (NII), Prof. Pierre Vandergheynst (EPFL), Prof. Pascal Frossard (EPFL), Dr. David Shuman (EPFL).

- **Funding**
 - Grants: NASA AIST-05-0081, NSF CCF-1018977, CCF-1410009
 - Gifts: MERL, LGE
 - Sabbatical: **Japan Society for Promotion of Science (JSPS)**
1 Introduction

2 Wavelet Transforms on Arbitrary Graphs

3 Applications

4 Conclusions
Graphs provide a flexible model to represent many datasets:

- Examples in Euclidean domains

(a) Computer graphics
(b) Wireless sensor networks
(c) image - graphs
Motivation

- Examples in non-Euclidean settings

(a) Social Networks, (b) Finite State Machines (FSM)

Graphs can capture complex relational characteristics (e.g., spatial, topological).
Graph Signal Processing?

- **Graph**: Assume fixed

- **Signal**: set of scalars associated to graph vertices

- Define familiar notions: frequency, sampling, transforms, etc

- Use these for compression, denoising, interpolation, etc
Examples

- **Sensor network**
 - Relative positions of sensors (kNN), temperature
 - Does temperature vary smoothly?

- **Social network**
 - Friendship relationship, age
 - Are friends of similar age?

- **Images**
 - Pixel positions and similarity, pixel values
 - Discontinuities and smoothness
What do we know about transformations on Graphs?

A and D: adjacency and degree matrices, $L = D - A$: graph Laplacian

L can be interpreted as a local (high-pass) operation on this graph

Circulant matrix – Eigenvectors: DFT
Can we do similar things on more complex graphs?
Can we do similar things on more complex graphs?

Yes! But things get more complicated
A is no longer circulant – no DFT in general, but...

- Polynomials of $L = D - A$ or A are local operators
- There will be a frequency interpretation: eigenvectors of L.
What makes these “graph transforms”?

Graph-based shift invariance – Operator is the same, local variations captured by A or L.

$H = L = D - A$

This can be generalized:

$H = L - 1 \sum_{k=0}^{\alpha} L^k$ or $H = L - 1 \sum_{k=0}^{\alpha} A^k$

Or alternatively, based on Graph Fourier Transform
What makes these “graph transforms”?

- Graph-based shift invariance – Operator is the same, local variations captured by \mathbf{A} or \mathbf{L}.

\[
\mathbf{H} = \mathbf{L} = \mathbf{D} - \mathbf{A}
\]
What makes these “graph transforms”?

- Graph-based shift invariance – Operator is the same, local variations captured by A or L.

$$H = L = D - A$$

- This can be generalized:

$$H = \sum_{k=0}^{L-1} \alpha_k L^k \quad \text{or} \quad H = \sum_{k=0}^{L-1} \alpha_k A^k$$

- Or alternatively, based on Graph Fourier Transform
Localized linear operations on graphs using polynomials of A or L.
Frequency interpretation is possible for eigenvectors of A or L.
A great deal depends on the topology of the graph.

In what follows we consider mostly undirected graphs without self loops and use L.
[Shuman, Narang, Frossard, Ortega, Vandergheysnt, SPM’2013]
Other approaches are possible based on A
[Sandryhaila and Moura 2013]
Research Goals

- Extend signal processing methods to arbitrary graphs
 - Downsampling, graph-frequency localization, multiresolution, wavelets, interpolation

Outcomes
- Work with massive graph-datasets: localized “frequency” analysis
- Novel insights about traditional applications (image/video processing)
- New applications

This talk
- Graph Signal Processing – intro
- Graph Filterbank design
- Applications
 - Depth image coding
 - Semi-supervised learning (2nd talk!)
Graphs 101

- Graph $G = (V, E, w)$.
- Adjacency matrix A
- Degree matrix $D = \text{diag}\{d_i\}$
- Laplacian matrix $L = D - A$.
- Normalized Laplacian matrix $\mathcal{L} = D^{-1/2}L D^{-1/2}$
- Graph Signal $f = \{f(1), f(2), ..., f(N)\}$

Assumptions:
1. Undirected graphs without self loops.
2. Scalar sample values
Spectrum of Graphs

- Graph Laplacian Matrix $\mathbf{L} = \mathbf{D} - \mathbf{A} = \mathbf{U}\Lambda\mathbf{U}'$

- Eigen-vectors of \mathbf{L}: $\mathbf{U} = \{\mathbf{u}_k\}_{k=1:N}$

- Eigen-values of \mathbf{L}: $\text{diag}\{\Lambda\} = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$

- Eigen-pair system $\{(\lambda_k, \mathbf{u}_k)\}$ provides Fourier-like interpretation — Graph Fourier Transform (GFT)
Graph Frequencies

(a) $\omega = \pi/4 \times 0$

(b) $\omega = \pi/4 \times 1$

(c) $\omega = \pi/4 \times 4$

(d) $\omega = \pi/4 \times 7$

DCT basis for regular signals

(a) $\lambda = 0.00$

(b) $\lambda = 0.04$

(c) $\lambda = 1.20$

(d) $\lambda = 1.55$

Eigenvectors of an arbitrary graph
Eigenvectors of graph Laplacian

(a) $\lambda = 0.00$
(b) $\lambda = 0.04$
(c) $\lambda = 0.20$
(d) $\lambda = 0.40$
(e) $\lambda = 1.20$
(f) $\lambda = 1.49$
Graph Transforms

- Desirable properties
 - Invertible
 - Critically sampled
 - Orthogonal
 - Localized in graph (space) and graph spectrum (frequency)

- Local Linear Transform
- Can we define Graph Wavelets?
Next Section

1. Introduction

2. Wavelet Transforms on Arbitrary Graphs

3. Applications

4. Conclusions
Discrete Wavelet Transforms in 2 slides – 1

(d) (e)

From Vetterli and Kovacevic, Wavelets and Subband Coding, '95
Note: Filters have some frequency and space localization

From Vetterli and Kovacevic, [Ding'07]
Prior Work – Spectral Graph Transforms

- Designed in the spectral domain of the graph. Examples:
 - Diffusion Wavelets [Coifman and Maggioni 2006]
 - Spectral Wavelets on Graphs [Hammond et al. 2011]

- Spectral Wavelet transforms [Hammond et al. 2011]:
 Design spectral kernels: \(h(\lambda) : \sigma(G) \rightarrow \mathbb{R} \).

\[
T_h = h(\mathcal{L}) = \mathbf{U} h(\Lambda) \mathbf{U}^t
\]

where
\[
h(\Lambda) = \text{diag}\{h(\lambda_i)\}
Spectral Graph Transforms Cont’d

- Output Coefficients:

$$w_f = T_h f = \sum_{\lambda \in \sigma(G)} h(\lambda) \bar{f}(\lambda) u_\lambda$$

- Polynomial kernel approximation:

$$h(\lambda) \approx \sum_{k=0}^{K} a_k \lambda^k$$

$$T_h \approx \sum_{k=0}^{K} a_k L^k$$

K-hop localized: no spectral decomposition required.
Graph Filterbank Designs

- Formulation of critically sampled graph filterbank design problem
- Design filters using spectral techniques [Hammond et al. 2009].
- Orthogonal (not compactly supported) [IEEE TSP June 2012]
- Bi-Orthogonal (compactly supported) [IEEE TSP Oct 2013]
Downsampling/Upsampling in Graphs

Downsampling-upsampling operation:

- **Regular Signals:**
 \[f_{du}(n) = \begin{cases}
 f(n) & \text{if } n = 2m \\
 0 & \text{if } n = 2m + 1
 \end{cases} \]

- **Graph signals:**
 \[f_{du}(n) = \begin{cases}
 f(n) & \text{if } n \in S \\
 0 & \text{if } n \notin S
 \end{cases} \]
 for some set \(S \).

- For regular signals DU by 2 operation is equivalent to
 \[F_{du}(e^{j\omega}) = \frac{1}{2}(F(e^{j\omega}) + F(e^{-j\omega})) \]
 in the DFT domain.

- What is the DU by 2 for graph signals in GFT domain?
Downsampling in Graphs

- Define $J_\beta = J_{\beta H} = \text{diag}\{\beta_H(n)\}$.
- In vector form:

$$f_{du} = \frac{1}{2}(f + J_\beta f) = \frac{1}{2}(f + \tilde{f})$$
Define $J_\beta = J_{\beta H} = \text{diag}\{\beta_H(n)\}$.

In vector form:

$$f_{du} = \frac{1}{2}(f + J_\beta f) = \frac{1}{2}(f + \tilde{f})$$

Spectral Folding [4]: For a bipartite graph $\tilde{f}(\lambda) = f(2 - \lambda)$.
Downsampling in Graphs

- Define $J_\beta = J_{\beta_H} = \text{diag}\{\beta_H(n)\}$.
- In vector form:

$$f_{du} = \frac{1}{2}(f + J_\beta f) = \frac{1}{2}(f + \tilde{f})$$

- **Spectral Folding** [4]: For a bipartite graph $\tilde{f}(\lambda) = f(2 - \lambda)$.
Graph filterbanks

- Filters designed in spectral domain (as [Hammond et al, 2009])
- Analysis:
 - $h_i(\lambda) : \mathbb{R} \rightarrow \mathbb{R}$ for $i = 0, 1$
 - $H_i = h_i(L) = U h_i(\Lambda) U^t$
- Synthesis:
 - $g_i(\lambda) : \mathbb{R} \rightarrow \mathbb{R}$
 - $G_i = g_i(L)$
Wavelet filterbanks on bipartite graphs

• **Aliasing Cancellation** $\Rightarrow B = 0$ if for all $\lambda \in \sigma(G)$:

$$B(\lambda) = g_1(\lambda)h_1(2 - \lambda) - g_0(\lambda)h_0(2 - \lambda) = 0$$
Wavelet filterbanks on bipartite graphs

- **Aliasing Cancellation** ⇒ $B = 0$ if for all $\lambda \in \sigma(G)$:

 \[B(\lambda) = g_1(\lambda)h_1(2 - \lambda) - g_0(\lambda)h_0(2 - \lambda) = 0 \]

- **Perfect Reconstruction** ⇒ $A = cI$ if for all $\lambda \in \sigma(G)$:

 \[A(\lambda) = g_1(\lambda)h_1(\lambda) + g_0(\lambda)h_0(\lambda) = c \]
GraphBior design

- Analogous to CDF wavelet Filters [Narang and Ortega, IEEE TSP, 2013]
GraphBior design

- Analogous to CDF wavelet Filters [Narang and Ortega, IEEE TSP, 2013]
- Choose kernels, s.t.,

\[
\begin{align*}
 h_0(\lambda) &= g_1(2 - \lambda) \\
 g_0(\lambda) &= h_1(2 - \lambda),
\end{align*}
\]

for aliasing cancellation \((B = 0)\).
GraphBior design

- Analogous to CDF wavelet Filters [Narang and Ortega, IEEE TSP, 2013]
- Choose kernels, s.t.,

\[
\begin{align*}
 h_0(\lambda) &= g_1(2 - \lambda) \\
 g_0(\lambda) &= h_1(2 - \lambda),
\end{align*}
\]

for aliasing cancellation (\(B = 0\)).

- The PR condition (\(A = 0\)) becomes:

\[
\underbrace{h_1(\lambda)g_1(\lambda)}_{p(\lambda)} + \underbrace{h_1(2 - \lambda)g_1(2 - \lambda)}_{p(2-\lambda)} = c
\]
GraphBior design

- Analogous to CDF wavelet Filters [Narang and Ortega, IEEE TSP, 2013]
- Choose kernels, s.t.,

\[h_0(\lambda) = g_1(2 - \lambda) \]
\[g_0(\lambda) = h_1(2 - \lambda), \]

for aliasing cancellation \((B = 0)\).
- The PR condition \((A = 0)\) becomes:

\[
\frac{h_1(\lambda)g_1(\lambda)}{p(\lambda)} + \frac{h_1(2 - \lambda)g_1(2 - \lambda)}{p(2-\lambda)} = c
\]

- Design \(p(\lambda)\) as a “maximally flat” polynomial and factorize into \(h_1(\lambda), g_1(\lambda)\) terms. Exact reconstruction with polynomial filter (compact support).
Bipartite Subgraph Decomposition

- But not all graphs are bipartite...
Bipartite Subgraph Decomposition

- But not all graphs are bipartite...
- Solution: “Iteratively” decompose non-bipartite graph G into K bipartite subgraphs:
 - each subgraph covers the same vertex set.
 - each edge in G belongs to exactly one bipartite graph.
Bipartite Subgraph Decomposition

- Example of a 2-dimensional ($K = 2$) decomposition:

G_0
Example of a 2-dimensional \((K = 2)\) decomposition:
Example of a 2-dimensional \((K = 2)\) decomposition:
Bipartite Subgraph Decomposition

- Example of a 2-dimensional ($K = 2$) decomposition:
Example of a 2-dimensional ($K = 2$) decomposition:
“Multi-dimensional” Filterbanks on graphs

Two-dimensional two-channel filterbank on graphs:

- **Advantages:**
 - Perfect reconstruction and orthogonal for *any* graph and *any* bpt decomposition.
 - Defined metrics to find "good" bipartite decompositions.
Example

(a) Minnesota traffic graph and graph signal

(b)
Bipartite decomposition
Output coefficients of the proposed filterbanks with parameter $m = 24$.
Reconstructed graph-signals for each channel.
1. Introduction

2. Wavelet Transforms on Arbitrary Graphs

3. Applications

4. Conclusions
Depth Image Coding [Narang, Chao and Ortega, 2013]

- Edge Detection
- Graph Selection
- Edge Encoding (JBIG)
- Graph-based Wavelet Transform
- Wavelet Coefficients Encoding (SPIHT)
- Output Bit stream

Advantage:
Link-weights can be adjusted to reflect geometrical structure of the image.
Depth Image Coding [Narang, Chao and Ortega, 2013]

Advantage: Link-weights can be adjusted to reflect geometrical structure of the image.
Depth Image Coding [Narang, Chao and Ortega, 2013]

- Edge detection: Prewitt
- Laplacian Normalization: Random Walk Laplacian
- Filterbanks: GraphBior 4/3 and CDF 9/7
- Unreliable Link Weight: 0.01
- Transform level: 5
- Encoder: SPIHT
What makes these “graph transforms”?

- **Graph-based shift invariance:**

\[
H = \sum_{k=0}^{L-1} \alpha_k L^k \quad \text{or} \quad H = \sum_{k=0}^{L-1} \alpha_k A^k
\]

- **Graph Fourier Transform**

\[
H = h(\mathcal{L}) = U h(\Lambda) U
\]
Conclusions

- Extending signal processing methods to arbitrary graphs: Downsampling, Space-frequency, Multiresolution, Wavelets
- Many open questions: very diverse types of graphs, results may apply to special classes only

Outcomes
- Work with massive graph-datasets: potential benefits of localized “frequency” analysis
- Novel insights about traditional applications (image/video processing)

To get started:
[Shuman, Narang, Frossard, Ortega, Vandergheysnt, SPM'2013]
S.K. Narang and A. Ortega.
Lifting based wavelet transforms on graphs.
In Proc. of Asia Pacific Signal and Information Processing Association (APSIPA), October 2009.

S. Narang, G. Shen, and A. Ortega.
Unidirectional graph-based wavelet transforms for efficient data gathering in sensor networks.
In In Proc. of ICASSP’10.

S. Narang and A. Ortega.
Downsampling Graphs using Spectral Theory
In In Proc. of ICASSP’11.

G. Shen and A. Ortega.
Transform-based Distributed Data Gathering.
IEEE Transactions on Signal Processing.

G. Shen, S. Pattem, and A. Ortega.
Energy-efficient graph-based wavelets for distributed coding in wireless sensor networks.
In Proc. of ICASSP’09, April 2009.

G. Shen, S. Narang, and A. Ortega.
Adaptive distributed transforms for irregularly sampled wireless sensor networks.
In Proc. of ICASSP’09, April 2009.

G. Shen and A. Ortega.
Tree-based wavelets for image coding: Orthogonalization and tree selection.
A survey on sensor networks.

R. Baraniuk, A. Cohen, and R. Wagner.
Approximation and compression of scattered data by meshless multiscale decompositions.

C.L. Chang and B. Girod.
Direction-adaptive discrete wavelet transform for image compression.

C. Chong and S. P. Kumar.
Sensor networks: Evolution, opportunities, and challenges.

R.R. Coifman and M. Maggioni.
Diffusion wavelets.

R. Cristescu, B. Beferull-Lozaon, and M. Vetterli.
Networked Slepian-Wolf: Theory, algorithms, and scaling laws.

M. Crovella and E. Kolaczyk.
Graph wavelets for spatial traffic analysis.
References III

TinyOS-2.
Collection tree protocol.
http://www.tinyos.net/tinyos-2.x/doc/.

Wavelets on irregular point sets.

W. Ding, F. Wu, X. Wu, S. Li, and H. Li.
Adaptive directional lifting-based wavelet transform for image coding.

M. Gastpar, P. Dragotti, and M. Vetterli.
The distributed Karhunen-Loève transform.

B. Girod and S. Han.
Optimum update for motion-compensated lifting.

V.K. Goyal.
Theoretical foundations of transform coding.

S. Haykin.
Adaptive Filter Theory.

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan.
Energy-efficient routing protocols for wireless microsensor networks.

M. Jansen, G. Nason, and B. Silverman.
Scattered data smoothing by empirical Bayesian shrinkage of second generation wavelet coefficients.

D. Jungnickel.
Graphs, Networks and Algorithms.

M. Maitre and M. N. Do,
“Shape-adaptive wavelet encoding of depth maps,”
In *Proc. of PCS'09*, 2009.

High-frequency distributed sensing for structure monitoring.

Y. Morvan, P.H.N. de With, and D. Farin,
“Platelet-based coding of depth maps for the transmission of multiview images,”
2006, vol. 6055, SPIE.

S. Pattem, B. Krishnamachari, and R. Govindan.
The impact of spatial correlation on routing with compression in wireless sensor networks.
E. Le Pennec and S. Mallat.
Sparse geometric image representations with bandelets.

Shallow water acoustic networks.

P. Rickenbach and R. Wattenhofer.
Gathering correlated data in sensor networks.

A. Said and W.A. Pearlman.
A New, Fast, and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees.
A. Sanchez, G. Shen, and A. Ortega,
“Edge-preserving depth-map coding using graph-based wavelets,”

G. Shen and A. Ortega.
Optimized distributed 2D transforms for irregularly sampled sensor network grids using wavelet lifting.
In Proc. of ICASSP’08, April 2008.

G. Shen and A. Ortega.
Joint routing and 2D transform optimization for irregular sensor network grids using wavelet lifting.
In IPSN ’08, April 2008.

G. Shen and A. Ortega.
Compact image representation using wavelet lifting along arbitrary trees.
In Proc. of ICIP’08, October 2008.

G. Shen, S. Pattem, and A. Ortega.
Energy-efficient graph-based wavelets for distributed coding in wireless sensor networks.
In Proc. of ICASSP’09, April 2009.

G. Shen, S. Narang, and A. Ortega.
Adaptive distributed transforms for irregularly sampled wireless sensor networks.
In Proc. of ICASSP’09, April 2009.

G. Shen and A. Ortega.
Tree-based wavelets for image coding: Orthogonalization and tree selection.
References VII

Edge-aware Intra Prediction for Depth Map Coding.
Submitted to Proc. of ICIP'10.

G. Shen and A. Ortega.
Transform-based Distributed Data Gathering.
To Appear in IEEE Transactions on Signal Processing.

G. Strang.
Linear Algebra and its Applications.

W. Sweldens.
The lifting scheme: A construction of second generation wavelets.

M. Tanimoto, T. Fujii, and K. Suzuki,

G. Valiente.
Algorithms on Trees and Graphs.

Directionlets: Anisotropic multidirectional representation with separable filtering.
R. Wagner, H. Choi, R. Baraniuk, and V. Delouille.
Distributed wavelet transform for irregular sensor network grids.

An architecture for distributed wavelet analysis and processing in sensor networks.
In *IPSN ’06*, April 2006.

A. Wang and A. Chandraksan.
Energy-efficient DSPs for wireless sensor networks.

Y. Zhu, K. Sundaresan, and R. Sivakumar.
Practical limits on achievable energy improvements and useable delay tolerance in correlation aware data gathering in wireless sensor networks.

S.K. Narang, G. Shen and A. Ortega,
“Unidirectional Graph-based Wavelet Transforms for Efficient Data Gathering in Sensor Networks”.
pp.2902-2905, ICASSP’10, Dallas, April 2010.

S.K. Narang and A. Ortega,
“Local Two-Channel Critically Sampled Filter-Banks On Graphs”,
Intl. Conf. on Image Proc. (2010),

R. R. Coifman and M. Maggioni,
“Diffusion Wavelets,”
References IX

A. Sandryhaila and J. Moura,
"Discrete Signal Processing on Graphs"
IEEE Transactions on Signal Processing, 2013

D. K. Hammond, P. Vandergheynst, and R. Gribonval,
“Wavelets on graphs via spectral graph theory,”
Applied and Computational Harmonic Analysis, March 2011.

D. Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst,
“Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Data Domains”
Signal Processing Magazine, May 2013

M. Crovella and E. Kolaczyk,
“Graph wavelets for spatial traffic analysis,”

G. Shen and A. Ortega,
“Optimized distributed 2D transforms for irregularly sampled sensor network grids using wavelet lifting,”

W. Wang and K. Ramchandran,
“Random multiresolution representations for arbitrary sensor network graphs,”

R. Wagner, H. Choi, R. Baraniuk, and V. Delouille.
Distributed wavelet transform for irregular sensor network grids.
S. K. Narang and A. Ortega,
“Lifting based wavelet transforms on graphs,”
(APSIPA ASC’ 09), 2009.

B. Zeng and J. Fu,
“Directional discrete cosine transforms for image coding,”

E. Le Pennec and S. Mallat,
“Sparse geometric image representations with bandelets,”

M. Vetterli V. Velisavljevic, B. Beferull-Lozano and P.L. Dragotti,
“Directionlets: Anisotropic multidirectional representation with separable filtering,”

P.H.N. de With Y. Morvan and D. Farin,
“Platelet-based coding of depth maps for the transmission of multiview images,”

M. Tanimoto, T. Fujii, and K. Suzuki,
“View synthesis algorithm in view synthesis reference software 2.0 (VSRS2.0),”

S. K. Narang and A. Ortega,
“Local two-channel critically-sampled filter-banks on graphs,”
In ICIP’10, Sep. 2010.
S.K. Narang and Ortega A.,
“Perfect reconstruction two-channel wavelet filter-banks for graph structured data,”
IEEE trans. on Sig. Proc., vol. 60, no. 6, June 2012.

J. P-Trufero, S.K. Narang and A. Ortega,
“Distributed Transforms for Efficient Data Gathering in Arbitrary Networks,”
In *ICIP’11.*, Sep 2011.

E. M-Enriquez, F. Daz-de-Mara and A. Ortega,
“Video Encoder Based on Lifting Transforms on Graphs,”
In *ICIP’11.*, Sep 2011.

Gilbert Strang,
“The discrete cosine transform,”

S.K. Narang and A. Ortega,
“Downsampling graphs using spectral theory,”
in *ICASSP ’11.*, May 2011.

Edge-avoiding wavelets and their applications.
In *SIGGRAPH ’09: ACM SIGGRAPH 2009 papers*, pages 1–10, New York, NY, USA. ACM.

Minimum-via topological routing.
An embedded wavelet video coder using three-dimensional set partitioning in hierarchical trees (SPIHT).

Sparse geometric image representations with bandelets.

Lifting transforms on graphs for video coding.
In Data Compression Conference (DCC), 2011, pages 73 –82.

Three-dimensional lifting schemes for motion compensated video compression.

I. Pesenson,
“Sampling in Paley-Wiener spaces on combinatorial graphs,”

Lifting-based invertible motion adaptive transform (limat) framework for highly scalable video compression.
An embedded wavelet hierarchical image coder.

Compact image representation using wavelet lifting along arbitrary trees.

Directionlets: anisotropic multidirectional representation with separable filtering.

Reduced Dimension Policy Iteration for Wireless Network Control via Multiscale Analysis.
Globecom, 2012.

Online learning in wireless networks via directed graph lifting transform.
Allerton, 2012.

Wavelets on Irregular Point Sets.

W. W. Zachary.
An information flow model for conflict and fission in small groups.
S. K. Narang, Y. H. Chao, and A. Ortega,
“Graph-wavelet filterbanks for edge-aware image processing,”

Discrete Signal Processing on Graphs.
Signal Processing, IEEE Transactions on, 61(7):1644-1656

Compact Support Biorthogonal Wavelet Filterbanks for Arbitrary Undirected Graphs.
Signal Processing, IEEE Transactions on

V. Ekambaram, G. Fanti, B. Ayazifar, K. Ramchandran.
Critically-Sampled Perfect-Reconstruction Spline-Wavelet Filterbanks for Graph Signals.
IEEE GlobalSIP 2013

References XV

References XVI

