Gene Cheung Associate Professor, York University 19th November, 2018

Graph Spectral Image Compression & Restoration (an intuitive & fun introduction)

Acknowledgement

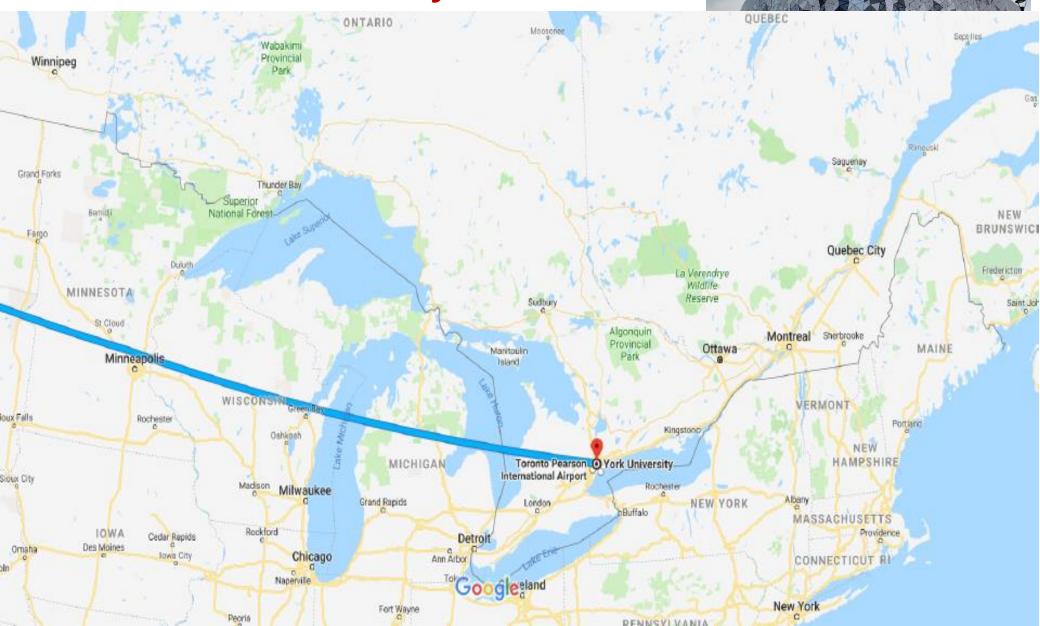
Collaborators:

- Y. Nakatsukasa (NII, Japan)
- S. Muramatsu (Niigata, Japan)
- A. Ortega (USC, USA)
- **D. Florencio** (MSR, USA)
- P. Frossard (EPFL, Switzerland)
- J. Liang, I. Bajic (SFU, Canada)
- X. Wu (McMaster U, Canada)
- V. Stankovic (U of Strathclyde, UK)
- P. Le Callet (U of Nantes, France)
- X. Liu (HIT, China)
- W. Hu, J. Liu, Z. Guo, W. Gao (Peking U., China)
- X. Ji, L. Fang (Tsinghua, China)
- Y. Zhao (BJTU, China)
- C.-W. Lin (National Tsing Hua University, Taiwan)
- E. Peixoto, B. Macchiavello, E. M. Hung (U. Brasilia, Brazil)

York University

- Founded in 1959 in Toronto, Ontario (largest city in Canada).
- 3rd largest public university in Canada:
 - 50,000 undergrads, 6,000 grads.
 - 7,000 faculties.
- Lassonde School of Engineering:
 - 4 departments, 130 professors, 3300 students
- Department of EECS:
 - Computer vision, machine learning, communications, power electronics.
- https://www.youtube.com/watch?v=W54mk0YAS_0

York University



York University

- Founded in 1959 in Toronto, Ontario (largest city in Canada).
- 3rd largest public university in Canada:
 - 50,000 undergrads, 6,000 grads.
 - 7,000 faculties.
- Lassonde School of Engineering:
 - 4 departments, 130 professors, 3300 students
- Department of EECS:
 - Computer vision, machine learning, communications, power electronics.
- https://www.youtube.com/watch?v=W54mk0YAS_0

Outline

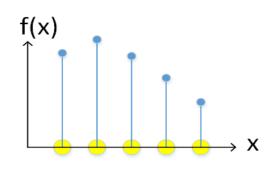
- GSP Fundamentals
- GSP for Image Compression
 - Graph Fourier Transform
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer (GLR)
 - Reweighted Graph TV
- Summary

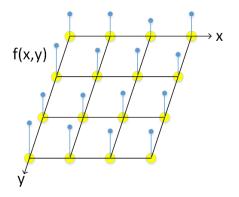
Outline

- GSP Fundamentals
- GSP for Image Compression
 - Graph Fourier Transform
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer (GLR)
 - Reweighted Graph TV
- Summary

Digital Signal Processing

- Discrete signals on regular data kernels.
 - Ex.1: audio on regularly sampled timeline.
 - Ex.2: image on 2D grid.
- Harmonic analysis tools (transforms, wavelets) for diff. tasks:
 - Compression.
 - Restoration.
 - Segmentation, classification.

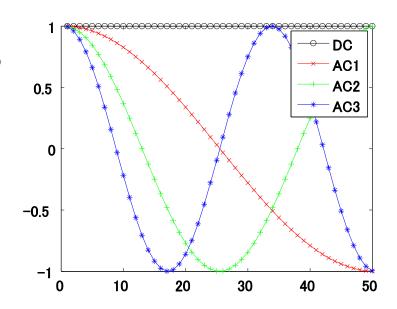


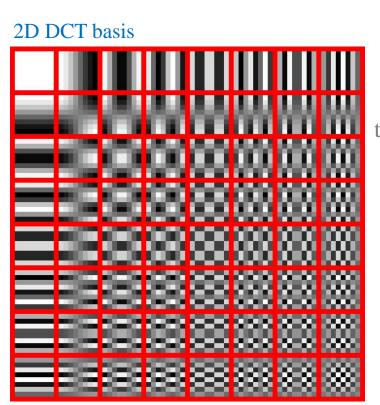


Smoothness of Signals

- Signals are often smooth.
- Notion of frequency, band-limited.
- Ex.: **DCT**:

$$X_{k} = \sum_{n=0}^{N-1} x_{n} \cos \left(\frac{\pi}{N} \left(n + \frac{1}{2} \right) k \right)$$





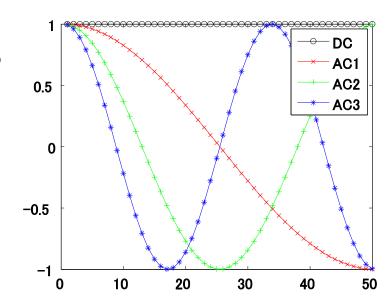
$$\mathbf{a} = \Phi \mathbf{X} \leftarrow \mathbf{a}$$
transform coeff.
$$\mathbf{a} = \begin{bmatrix} a_0 \\ a_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

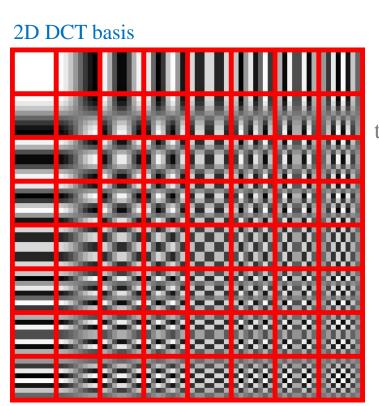
desired signaltransform

Smoothness of Signals

- Signals are often smooth.
- Notion of frequency, band-limited.
- Ex.: **DCT**:

$$X_{k} = \sum_{n=0}^{N-1} x_{n} \cos \left(\frac{\pi}{N} \left(n + \frac{1}{2} \right) k \right)$$





 $a = \Phi x$ transform coeff. $a = \begin{bmatrix} a_0 \\ a_1 \\ 0 \\ \vdots \end{bmatrix}$

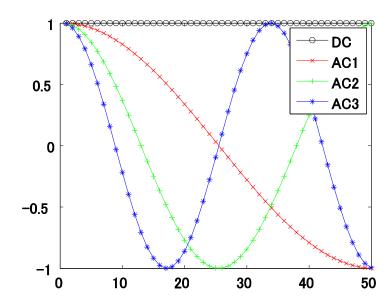
desired signal

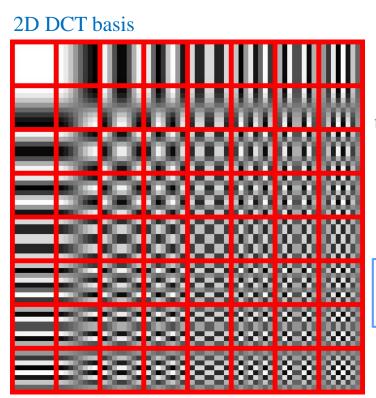
Typical pixel blocks have almost no high frequency components.

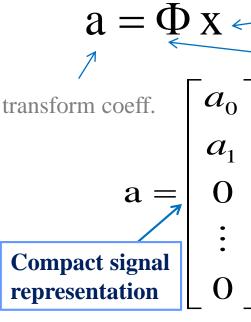
Smoothness of Signals

- Signals are often smooth.
- Notion of frequency, band-limited.
- Ex.: **DCT**:

$$X_{k} = \sum_{n=0}^{N-1} x_{n} \cos \left(\frac{\pi}{N} \left(n + \frac{1}{2} \right) k \right)$$

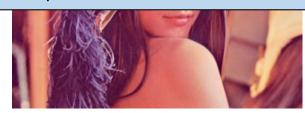




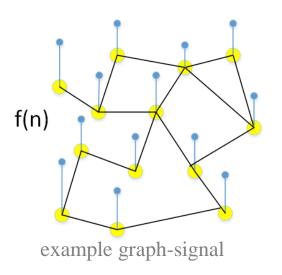


desired signal

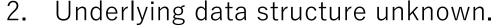
Typical pixel blocks have almost no high frequency components.



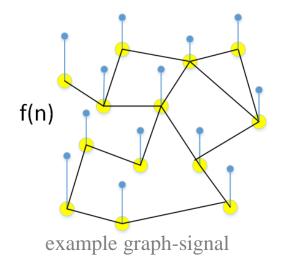
- Signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals node-to-node relationships.
 - 1. Data domain is naturally a graph.
 - Ex: ages of users on social networks.
 - 2. Underlying data structure unknown.
 - Ex: images: 2D grid → structured graph.



- Signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals node-to-node relationships.
 - 1. Data domain is naturally a graph.
 - Ex: ages of users on social networks.

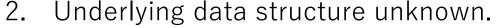


• Ex: images: 2D grid → structured graph.

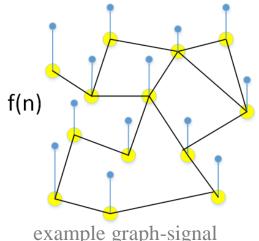


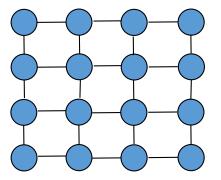
Graph Signal Processing (GSP) addresses the problem of processing signals that live on graphs.

- Signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals node-to-node relationships.
 - Data domain is naturally a graph.
 - Ex: ages of users on social networks.



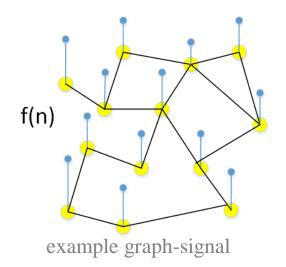
Ex: images: 2D grid → structured graph.

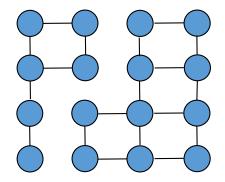




Graph Signal Processing (GSP) addresses the problem of processing signals that live on graphs.

- Signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals node-to-node relationships.
 - Data domain is naturally a graph.
 - Ex: ages of users on social networks.
 - 2. Underlying data structure unknown.
 - Ex: images: 2D grid → structured graph.





Graph Signal Processing (GSP) addresses the problem of processing signals that live on graphs.

Graph Fourier Transform (GFT)

Graph Laplacian:

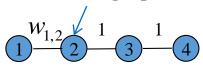
 Adjacency Matrix A: entry A_{i,i} has non-negative edge weight $w_{i,i}$ connecting nodes i and j.

• Degree Matrix D: diagonal matrix w/ entry $D_{i,i}$ being sum of column entries in row i of A.

$$D_{i,i} = \sum_{j} A_{i,j}$$

- Combinatorial Graph Laplacian L: L = D-A
 - L is *symmetric* (graph undirected).
 - L is a *high-pass* filter.
 - L is related to 2nd derivative.

undirected graph



$$\mathbf{A} = \begin{bmatrix} 0 & w_{1,2} & 0 & 0 \\ w_{1,2} & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} w_{1,2} & 0 & 0 & 0 \\ 0 & w_{1,2} + 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} w_{1,2} & -w_{1,2} & 0 & 0 \\ -w_{1,2} & w_{1,2} + 1 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$L_{3..}x = -x_2 + 2x_3 - x_4$$

$$L_{3,:}x = -x_2 + 2x_3 - x_4$$

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Graph Fourier Transform (GFT)

Graph Laplacian:

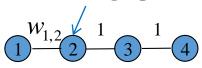
 Adjacency Matrix A: entry A_{i,i} has non-negative edge weight $w_{i,i}$ connecting nodes i and j.

• Degree Matrix D: diagonal matrix w/ entry $D_{i,i}$ being sum of column entries in row i of A.

$$D_{i,i} = \sum_{j} A_{i,j}$$

- Combinatorial Graph Laplacian L: L = D-A
 - L is *symmetric* (graph undirected).
 - L is a *high-pass* filter.
 - L is related to 2nd derivative.

undirected graph



$$\mathbf{A} = \begin{vmatrix} 0 & w_{1,2} & 0 & 0 \\ w_{1,2} & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix}$$

$$\mathbf{D} = \begin{bmatrix} w_{1,2} & 0 & 0 & 0 \\ 0 & w_{1,2} + 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathcal{L} = \begin{bmatrix} w_{1,2} & -w_{1,2} & 0 & 0 \\ -w_{1,2} & w_{1,2} + 1 & -1 & 0 \\ \hline 0 & -1 & 2 & -1 \\ \hline 0 & 0 & -1 & 1 \end{bmatrix}$$

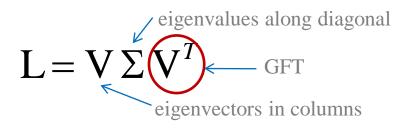
$$L_{3::}x = -x_2 + 2x_3 - x_4$$

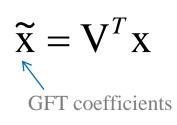
$$L_{3,:}x = -x_2 + 2x_3 - x_4$$

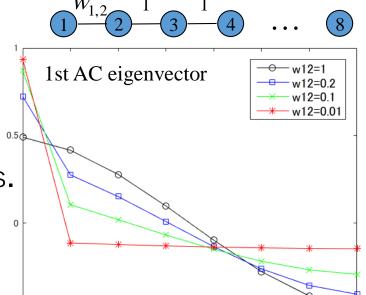
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Graph Spectrum from GFT

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.



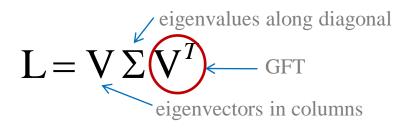


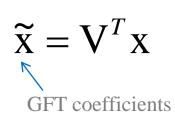


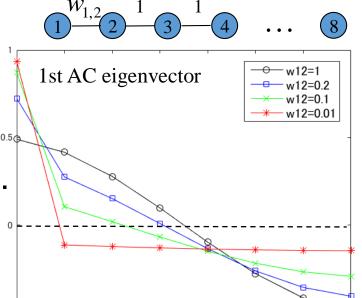
- 1. Edge weights affect shapes of eigenvectors.
- 2. Eigenvalues (≥ 0) as graph frequencies.
 - Constant eigenvector is DC.
 - # zero-crossings increases as λ increases.
- GFT defaults to *DCT* for un-weighted connected line.
- GFT defaults to *DFT* for un-weighted connected circle.

Graph Spectrum from GFT

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

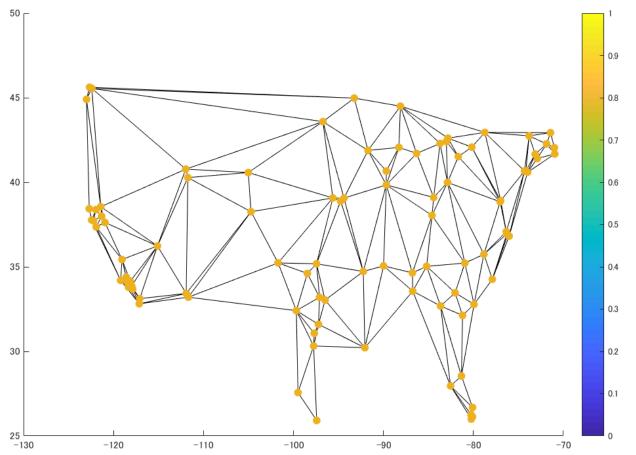






- 1. Edge weights affect shapes of eigenvectors.
- 2. Eigenvalues (≥ 0) as graph frequencies.
 - Constant eigenvector is DC.
 - # zero-crossings increases as λ increases.
- GFT defaults to *DCT* for un-weighted connected line.
- GFT defaults to *DFT* for un-weighted connected circle.

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation*. $w_{i,j} = \exp \left[\frac{1}{2} \right]$
- Edge weights inverse proportion to distance.

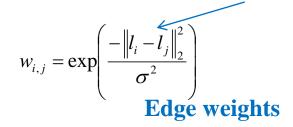


 $w_{i,j} = \exp\left(\frac{-\left\|l_i - l_j\right\|_2^2}{\sigma^2}\right)$ Edge weights

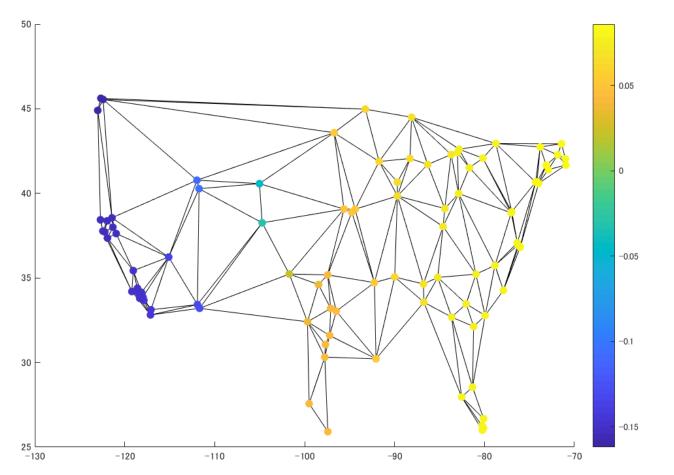
location diff.

V1: DC component

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation*. $w_{i,j} = \exp \left| \frac{-\|l_i\|_{i,j}}{c} \right|$



location diff.



V2: 1st AC component

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation*. $w_{i,j} = \exp \left| \frac{-\|l_i\|_{i,j}}{\alpha} \right|$

50 _ 45 40 0.05 35 30 -0.15 -130 -110-100-70

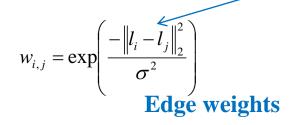
 $w_{i,j} = \exp\left(\frac{-\left\|l_i - l_j\right\|_2^2}{\sigma^2}\right)$ Edge weights

location diff.

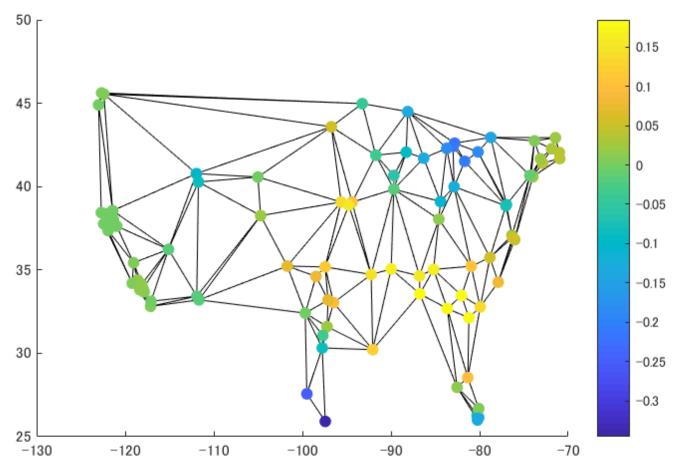
V3: 2nd AC component

11

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation*. $w_{i,j} = \exp\left[\frac{-\|l_i l_j\|_2^2}{\sigma^2}\right]$



location diff.



V4: 9th AC component

11

Variants of Graph Laplacians

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

$$L = V \sum_{\text{eigenvectors in columns}}^{\text{eigenvalues along diagonal}}$$

- Other definitions of graph Laplacians:
 - Normalized graph Laplacian:

$$L_n = D^{-1/2}LD^{-1/2} = I - D^{-1/2}AD^{-1/2}$$

• Random walk graph Laplacian:

$$L_{rw} = D^{-1}L = I - D^{-1}A$$

Generalized graph Laplacian [1]:

$$L_g = L + D^*$$

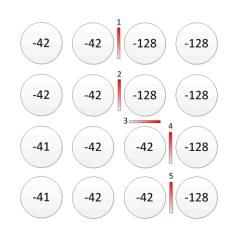
Characteristics:

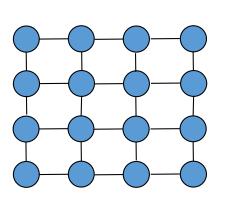
- Normalized.
- Symmetric.
- No DC component.
- Normalized.
- Asymmetric.
- Eigenvectors not orthog.
- Symmetric.
- L plus self loops.
- Defaults to DST, ADST.

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Graph Fourier Transform
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer (GLR)
 - Reweighted Graph TV
- Summary

GFT for Image Compression



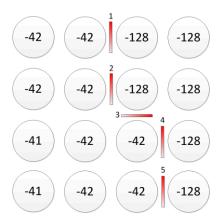


- DCT are fixed basis. Can we do better?
- Idea: use adaptive GFT to improve sparsity [1].
 - 1. Assign edge weight 1 to adjacent pixel pairs.
 - 2. Assign edge weight 0 to sharp signal discontinuity.
 - 3. Compute GFT for transform coding, transmit coeff.

$$\tilde{\mathbf{x}} = \mathbf{V}^T \mathbf{x}$$
 GFT

- 4. Transmit bits (*contour*) to identify chosen GFT to decoder (overhead of GFT).
- [1] G. Shen et al., "Edge-adaptive Transforms for Efficient Depth Map Coding," *IEEE Picture Coding Symposium*, Nagoya, Japan, December 2010.

GFT for Image Compression



- DCT are fixed basis. Can we do better?
- Idea: use adaptive GFT to improve sparsity [1].
 - 1. Assign edge weight 1 to adjacent pixel pairs.
 - 2. Assign edge weight 0 to sharp signal discontinuity.
 - 3. Compute GFT for transform coding, transmit coeff.

$$\tilde{\mathbf{x}} = \mathbf{V}^T \mathbf{x}$$

4. Transmit bits (*contour*) to identify chosen GFT to decoder (overhead of GFT).

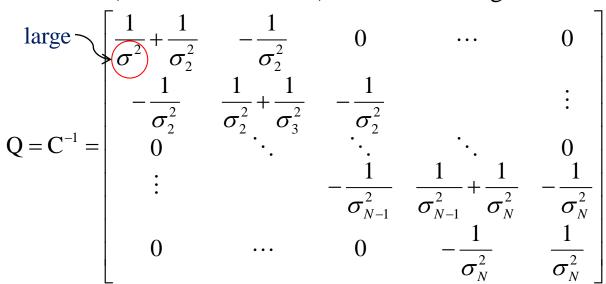
- [1] G. Shen et al., "Edge-adaptive Transforms for Efficient Depth Map Coding," *IEEE Picture Coding Symposium*, Nagoya, Japan, December 2010.
- [2] W. Hu, G. Cheung, X. Li, O. Au, "Depth Map Compression using Multi-resolution Graph-based Transform for Depth-image-based Rendering," *IEEE International Conference on Image Processing*, Orlando, FL, September 2012.

Edge Weight Assignment

• Assume a 1D 1st-order *autoregressive* (AR) process $\mathbf{x} = [x_1, ..., x_N]^T$ where,

$$x_k = \begin{cases} \eta & \text{o-mean r.v. with large var. } \sigma^2 \\ x_k = 1 \\ x_{k-1} + e_k & 1 < k \le N \end{cases}$$
0-mean r.v. with var. σ

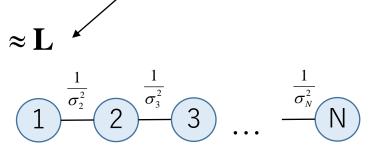
• Precision (inverse covariance) matrix is tridiagonal.



$$\mathbf{F}\mathbf{x} = \mathbf{b},$$

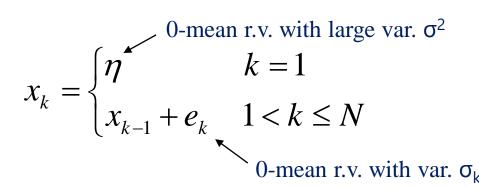
$$x_{k} = \begin{cases} \eta & k = 1 \\ x_{k-1} + e_{k} & 1 < k \le N \\ 0 \text{-mean r.v. with var. } \sigma_{k}^{2} & \mathbf{F} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \ddots & \ddots & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \eta \\ e_{2} \\ \vdots \\ e_{N} \end{bmatrix}$$
recision (inverse covariance) matrix is tridiagonal.
$$\begin{vmatrix} 1 \\ \sigma_{2}^{2} + \frac{1}{\sigma_{2}^{2}} & -\frac{1}{\sigma_{2}^{2}} & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1$$

Graph Laplacian matrix!



Edge Weight Assignment

• Assume a 1D 1st-order *autoregressive* (AR) process $\mathbf{x} = [x_1, ..., x_N]^T$ where,



$$\mathbf{F}\mathbf{x} = \mathbf{b},$$

1. Eigenvectors of covariance matrix compose KLT, optimally decorrelating signal.

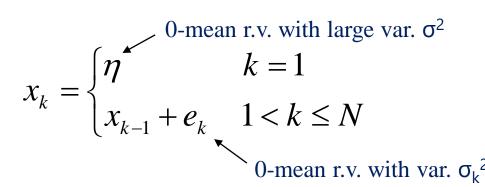
$$Q = C^{-1} = \begin{bmatrix} 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & & -\frac{1}{\sigma_{N-1}^2} & \frac{1}{\sigma_N^2} + \frac{1}{\sigma_N^2} & -\frac{1}{\sigma_N^2} \end{bmatrix} \approx L$$

$$0 & \cdots & 0 & -\frac{1}{\sigma_N^2} & \frac{1}{\sigma_N^2} \end{bmatrix}$$

$$0 & \cdots & 0 & -\frac{1}{\sigma_N^2} & \frac{1}{\sigma_N^2} \end{bmatrix}$$

Edge Weight Assignment

• Assume a 1D 1st-order *autoregressive* (AR) process $\mathbf{x} = [x_1, ..., x_N]^T$ where,



$$\mathbf{F}\mathbf{x} = \mathbf{b},$$

$$x_{k} = \begin{cases} \eta & k = 1 \\ x_{k-1} + e_{k} & 1 < k \le N \\ 0 - \text{mean r.v. with var. } \sigma_{k}^{2} & \mathbf{F} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \eta \\ e_{2} \\ \vdots \\ e_{N} \end{bmatrix}$$
• Precision (inverse covariance) matrix is tridiagonal.
$$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1$$

- - 1. Eigenvectors of covariance matrix compose KLT, optimally decorrelating signal.
 - 2. Graph Laplacian matrix approximates precision matrix, hence GFT approximates KLT.

$$0 \qquad \cdots \qquad 0 \qquad -\frac{1}{\sigma_N^2} \qquad \frac{1}{\sigma_N^2}$$

Multi-resolution-GFT Implementation

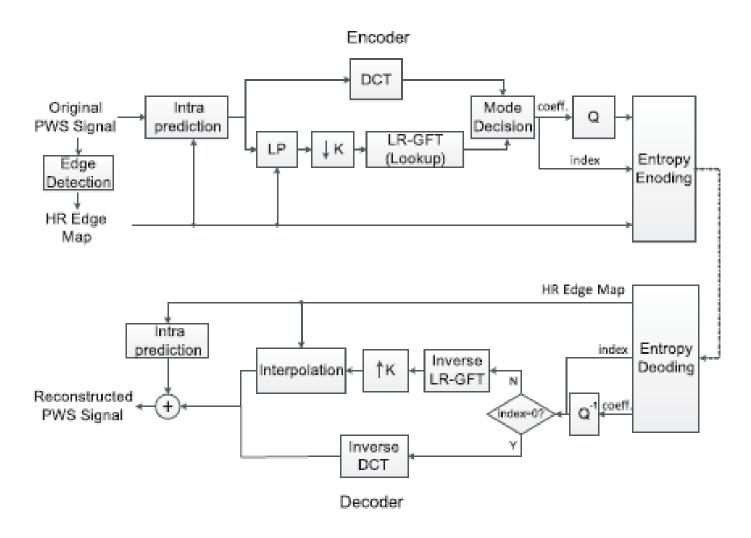


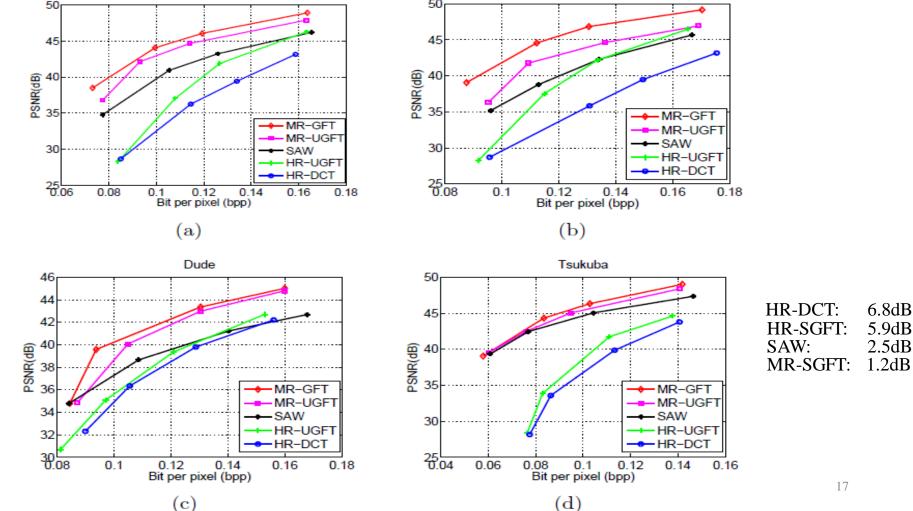
Fig. 2. MR-GFT coding system for PWS images.

Experimentation

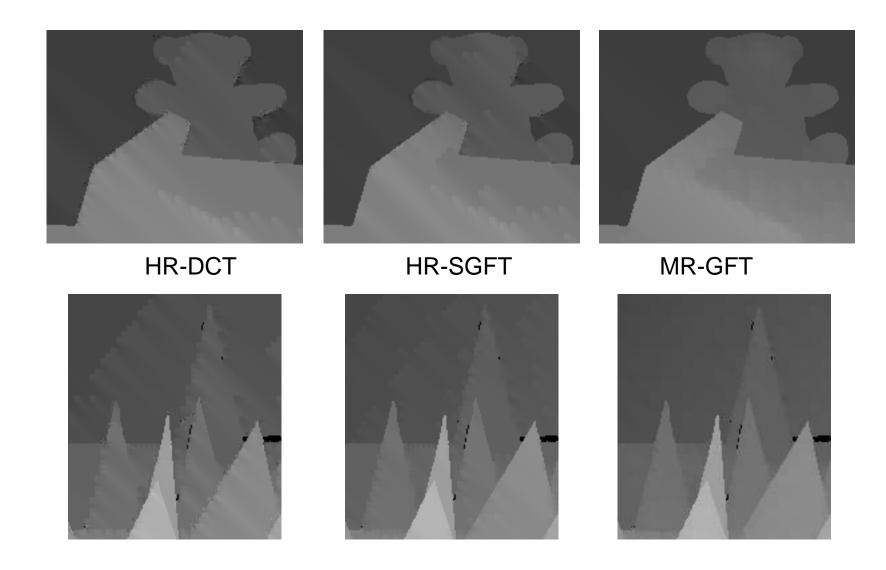
• Setup

- Test images: depth maps of *Teddy* and *Cones*, and graphics images of *Dude* and *Tsukuba*.

- Compare against: HR-DCT, HR-SGFT, SAW, MR-SGFT in H.264.



Subjective Results



Graph-Signal Sampling / Encoding for 3D Point Cloud

- Problem: Point clouds require encoding specific 3D coordinates.
- Assumption: smooth 2D manifold in 3D space.
- Proposal: progressive 3D geometry rep. as series of graph-signals.
 - 1. adaptively identifies new samples on the manifold surface, and
 - 2. encodes them efficiently as graph-signals.

(i+1)**ℯ**th \$ample

i-th Kernel

i-th Sample

Sample Value

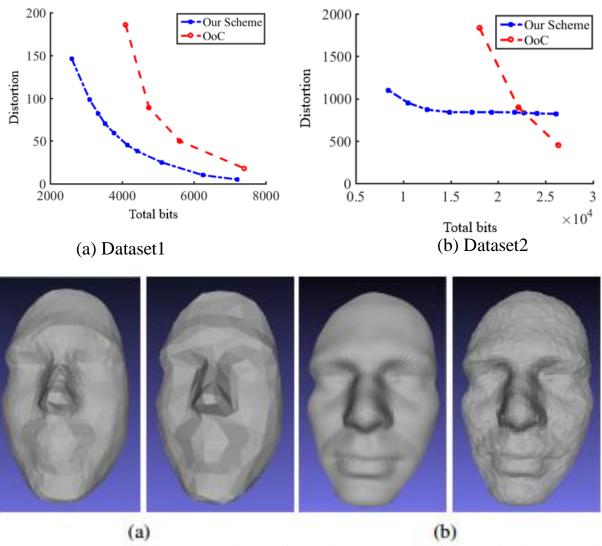
Knot

Example:

- Interpolate i^{th} iteration samples (black circles) to a **continuous kernel** (mesh), an approximation of the target surface $\boldsymbol{\mathcal{S}}$.
- New sample locations, knots (squares), are located on the kernel surface.
- **Signed distances** between knots and $\boldsymbol{\mathcal{S}}$ are recorded as sample values.
- Sample values (green circles) are encoded as a graph-signal via GFT.

Graph-Signal Sampling / Encoding for 3D Point Cloud

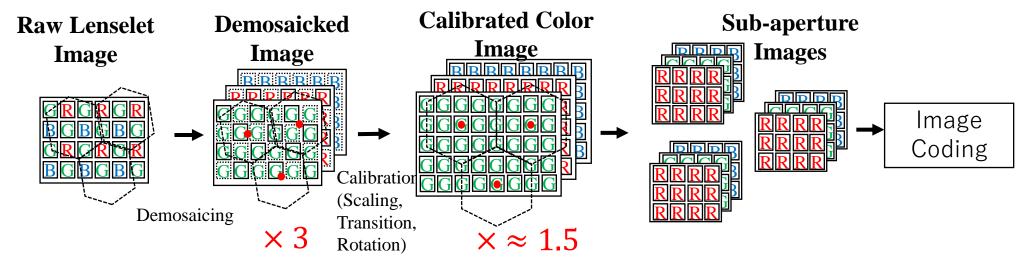
• Experimental Results:



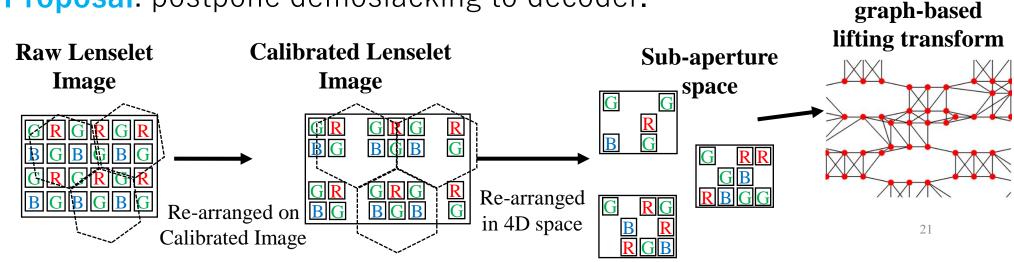
[1] M. Zhao, G. Cheung, D. Florencio, X. Ji, "Progressive Graph-Signal Sampling and Encoding for Static 3D Geometry Representation," *IEEE International Conference on Image Processing*, Beijing, China, September, 2017.

Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform

Problem: Sub-aperture images in Light field data are huge.



Proposal: postpone demosiacking to decoder.

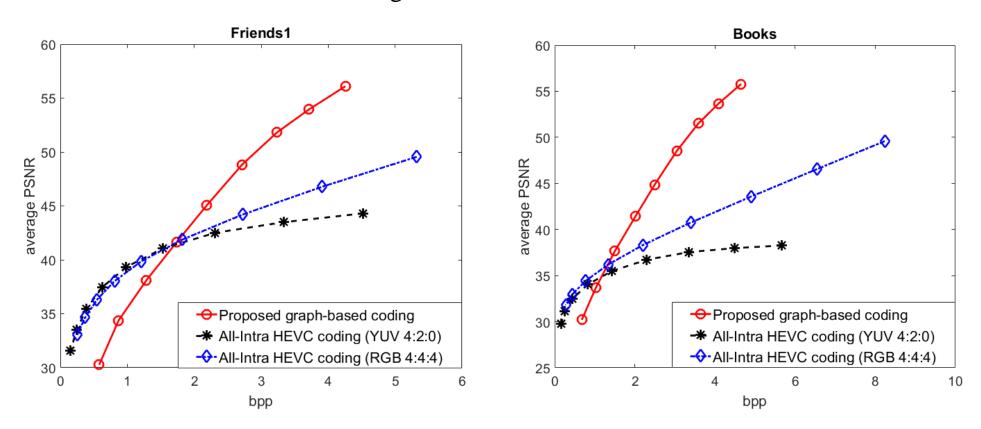


Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform

Experimental Results:

Dataset: EPFL light field image dataset

Baseline: All-intra HEVC coding in YUV4:2:0 and RGB 4:4:4



[1] Y.-H. Chao, G. Cheung, A. Ortega, "**Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform**," *IEEE Int'l Conf. on Image Processing*, Beijing, China, September, 2017. (**Best student paper award**)

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Graph Fourier Transform
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer (GLR)
 - Reweighted Graph TV
- Summary

Graph Laplacian Regularizer

• $\mathbf{x}^T \mathbf{L} \mathbf{x}$ (graph Laplacian regularizer) [1]) is one smoothness measure.

$$\mathbf{x}^{T}\mathbf{L}\mathbf{x} = \frac{1}{2} \sum_{i,j} w_{i,j} (x_{i} - x_{j})^{2} = \sum_{k} \lambda_{k} \widetilde{\mathbf{x}}_{k}^{2}$$
 signal contains mostly low graph freq.

Signal Denoising:

signal'smooth in nodal domain

desired signal

$$y = x + v \leftarrow$$
 noise

MAP Formulation:

fidelity term $\min_{x} \|y - x\|_{2}^{2} + \mu x^{T} L x$ update edge
weights $(I + \mu L) x^{*} = y$ linear system of eqn's w/ sparse

linear system of eqn's w/ sparse, symmetric PD matrix

Graph Laplacian Regularizer

• $\mathbf{x}^T \mathbf{L} \mathbf{x}$ (graph Laplacian regularizer) [1]) is one smoothness measure.

$$\mathbf{x}^T \mathbf{L} \mathbf{x} = \frac{1}{2} \sum_{i,j} w_{i,j} (x_i - x_j)^2 = \sum_k \lambda_k \widetilde{\mathbf{x}}_k^2$$
 signal contains mostly low graph freq.

Signal Denoising:

nodal domain

$$y = x + v$$

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L} \mathbf{x}$$

$$(\mathbf{I} + \mu \mathbf{L}) \mathbf{x}^{*} = \mathbf{y}$$
line

pixel intensity diff.

pixel location diff. $w_{i,j} = \exp\left(\frac{-\|x_i - x_j\|_2^2}{\sigma_1^2}\right) \exp\left(\frac{-\|l_i - l_j\|_2^2}{\sigma_2^2}\right)$

linear system of eqn's w/ sparse, symmetric PD matrix

Graph Laplacian Regularizer

• $\mathbf{x}^T \mathbf{L} \mathbf{x}$ (graph Laplacian regularizer) [1]) is one smoothness measure.

$$\mathbf{x}^T \mathbf{L} \mathbf{x} = \frac{1}{2} \sum_{i,j} w_{i,j} (x_i - x_j)^2 = \sum_k \lambda_k \widetilde{\mathbf{x}}_k^2$$
 signal contains mostly low graph freq.

Signal Denoising:

MAP Formulation:

$$y = x + v$$

nodal domain

1. Reweighted Graph Laplacian Regularizer (RGLR):

$$\mathbf{x}^{T} \mathbf{L}(\mathbf{x}) \mathbf{x} = \frac{1}{2} \sum_{i,j} \exp \left[\frac{(x_i - x_j)^2}{\sigma^2} \right] (x_i - x_j)^2$$

Optimal Graph Laplacian Regularization for Denoising

• Adopt a patch-based recovery framework, for a noisy patch \mathbf{p}_0

Spatial

1. Find K-1 patches similar to \mathbf{p}_0 in terms of Euclidean distance.

$$\mathbf{f}_1^D(i) = \sqrt{\sigma^2 + \alpha} \cdot x_i$$

2. Compute **feature functions**, leading to edge weights and Laplacian.

$$\mathbf{f}_2^D(i) = \sqrt{\sigma^2 + \alpha} \cdot y_i$$

3. Solve the unconstrained quadratic optimization:

$$q^* = \arg\min_{q} ||p_0 - q||_2^2 + \lambda q^T L q \implies q = (I + \lambda L)^{-1} p_0$$

Intensity

$$\mathbf{f}_{3}^{D} = \frac{1}{K + \sigma_{e}^{2} / \sigma_{g}^{2}} \sum_{k=0}^{K-1} \mathbf{p}_{k}$$

to obtain the denoised patch.

- Aggregate denoised patches to form an updated image.
- Denoise the image iteratively to gradually enhance its quality.
- Optimal Graph Laplacian Regularization for Denoising (OGLRD).

Denoising Experiments (natural images)

Subjective comparisons ($\sigma_1 = 40$)

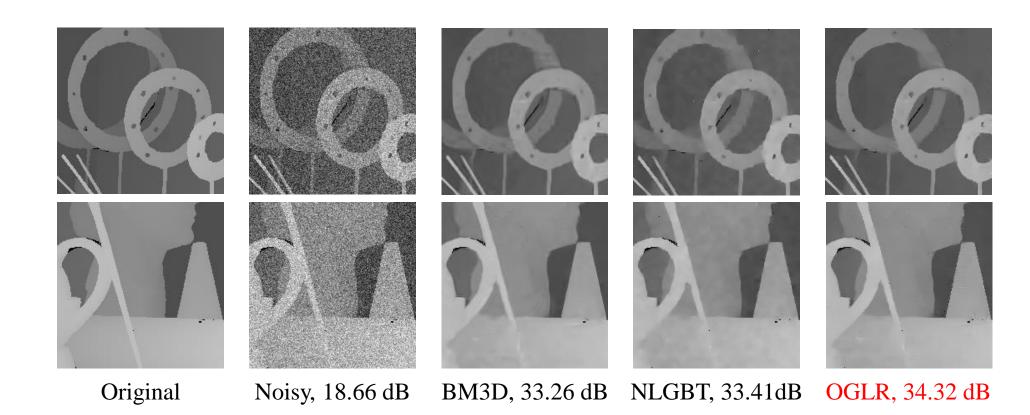
BM3D, 27.99 dB

PLOW, 28.11 dB

OGLR, 28.35 dB

Denoising Experiments (depth images)

• Subjective comparisons ($\sigma_1 = 30$)



GLR for Joint Dequantization / Contrast Enhancement

• Retinex decomposition model: reflectance

$$\mathbf{y} = \tau \mathbf{l} \odot \mathbf{r} + \mathbf{z} \leftarrow \text{noise}$$

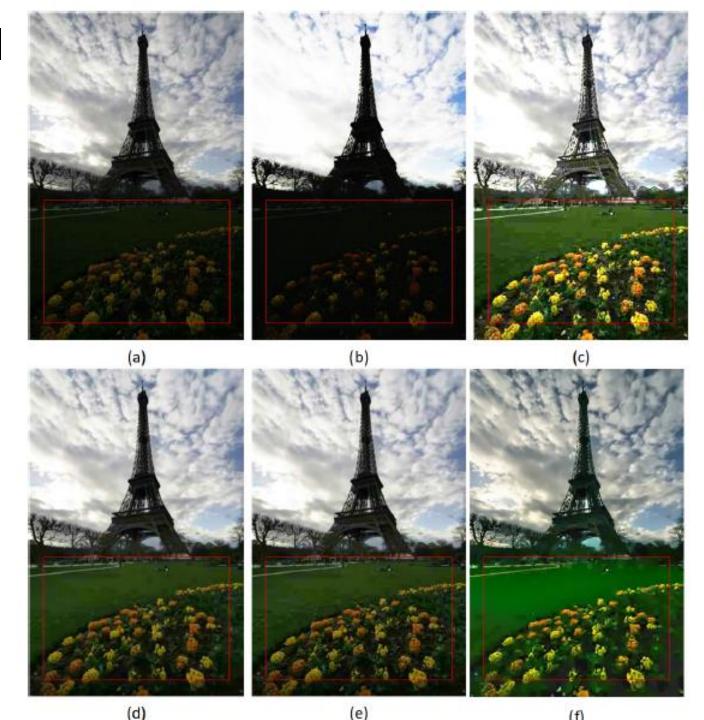
• Objective: general smoothness for luminance, smoothness w/ negative edges for reflectance.

$$\begin{aligned} & \underset{\mathbf{l}, \mathbf{r}}{\min} & \mathbf{l}^{\top} \left(\mathbf{L}_{l} + \alpha \mathbf{L}_{l}^{2} \right) \mathbf{l} + \mu \, \mathbf{r}^{\top} \mathcal{L}_{r} \mathbf{r} \\ & \text{s.t.} & \left(\mathbf{q} - \frac{1}{2} \right) \mathbf{Q} \preceq \mathbf{T} \tau \, \mathbf{l} \odot \mathbf{r} \ \prec \left(\mathbf{q} + \frac{1}{2} \right) \mathbf{Q} \end{aligned}$$

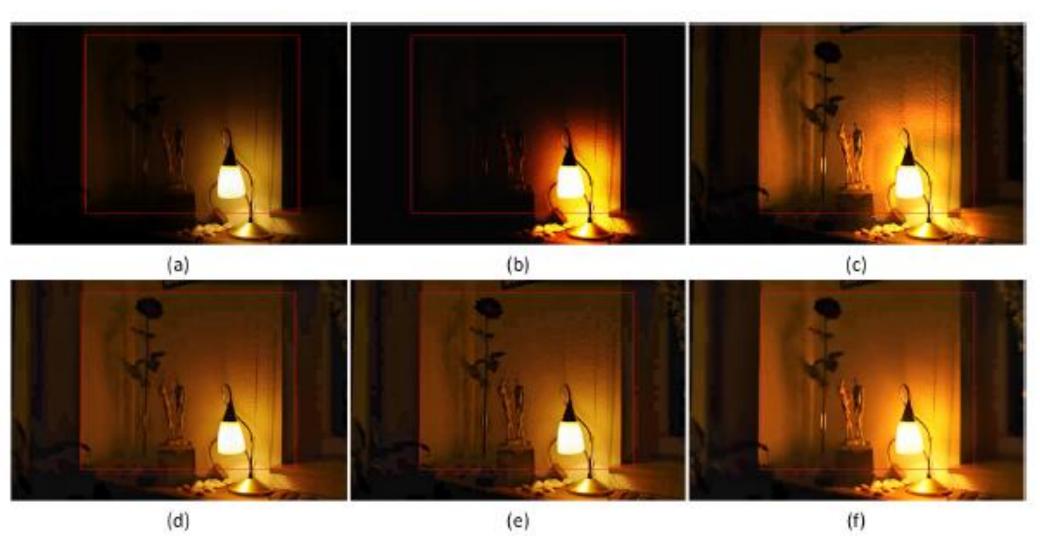
- Constraints: quantization bin constraints
- Solution: Alternating accelerated proximal gradient alg [1].

Experimental Results

Experimental Results



Experimental Results



Graph Total Variation (GTV)

Graph Laplacian Regularizer (GLR):

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L} \mathbf{x}$$

$$\mathbf{x}^{T} \mathbf{L} \mathbf{x} = \sum_{i,j} w_{i,j} (x_{i} - x_{j})^{2}$$

- System of linear equations:
- $(I + \mu L) x^* = y$
- Graph Total Variation (GTV):

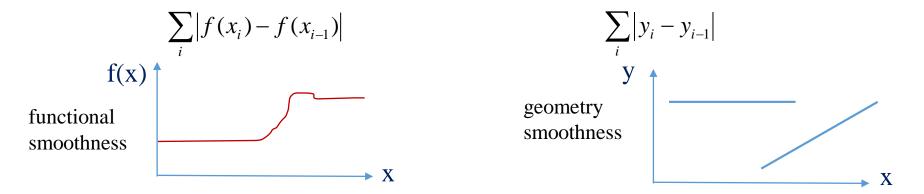
$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \sum_{i,j} w_{i,j} |x_{i} - x_{j}|$$

• L2-L1 norm minimization: primal-dual algorithm, proximal gradient.

[1] M. Hidane, O. Lezoray, and A. Elmoataz, "Nonlinear multilayered representation of graph-signals," in *Journal of Mathematical Imaging and Vision*, February 2013, vol. 45, no.2, pp. 114–137.

GTV for Point Cloud Denoising

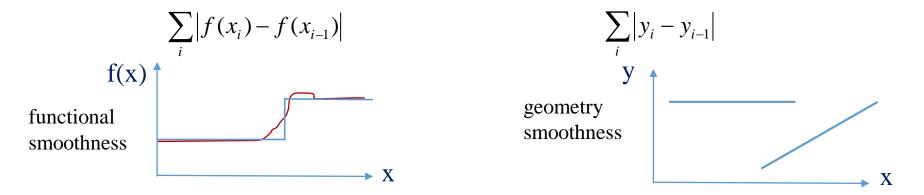
- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
 - only a singular 3D point has zero GTV value.



• Proposal: Apply GTV is to the surface normals of 3D point cloud—a generalization of TV to 3D geometry.

GTV for Point Cloud Denoising

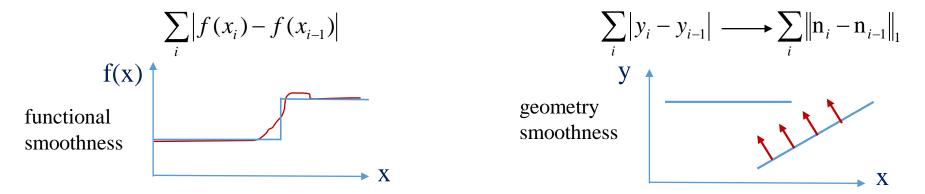
- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
 - only a singular 3D point has zero GTV value.



• Proposal: Apply GTV is to the surface normals of 3D point cloud—a generalization of TV to 3D geometry.

GTV for Point Cloud Denoising

- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
 - only a singular 3D point has zero GTV value.



• Proposal: Apply GTV is to the surface normals of 3D point cloud—a generalization of TV to 3D geometry.

Algorithm Overview

• Use graph total variation (GTV) of surface normals over the K-NN graph:

$$||\mathbf{n}||_{\text{GTV}} = \sum_{i,j \in \mathcal{E}} w_{i,j} ||\mathbf{n}_i - \mathbf{n}_j||_1 \qquad \mathbf{n}_i \qquad \mathbf{n}_j \qquad w_{i,j} = \exp\left(-\frac{||\mathbf{p}_i - \mathbf{p}_j||_2^2}{\sigma_p^2}\right)$$

• Denoising problem as I2-norm fidelity plus GTV of surface normals:

$$\min_{\mathbf{p}, \mathbf{n}} \|\mathbf{q} - \mathbf{p}\|_{2}^{2} + \gamma \sum_{i, j \in E} w_{i, j} \|\mathbf{n}_{i} - \mathbf{n}_{j}\|_{1}$$

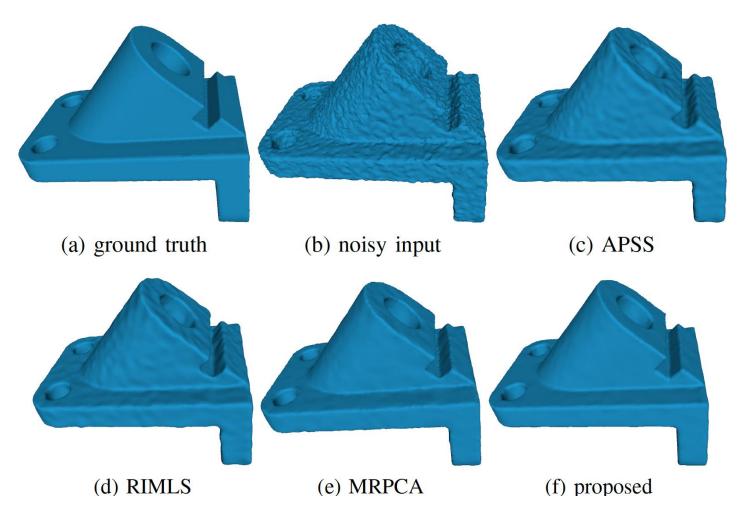
• Surface normal estimation of \mathbf{n}_i is a nonlinear function of \mathbf{p}_i and neighbors.

Proposal:

- 1. Partition point cloud into **two independent classes** (say **red** and **blue**).
- 2. When computing surface normal for a red node, use only neighboring blue points.
- 3. Solve convex optimization for red (blue) nodes alternately.

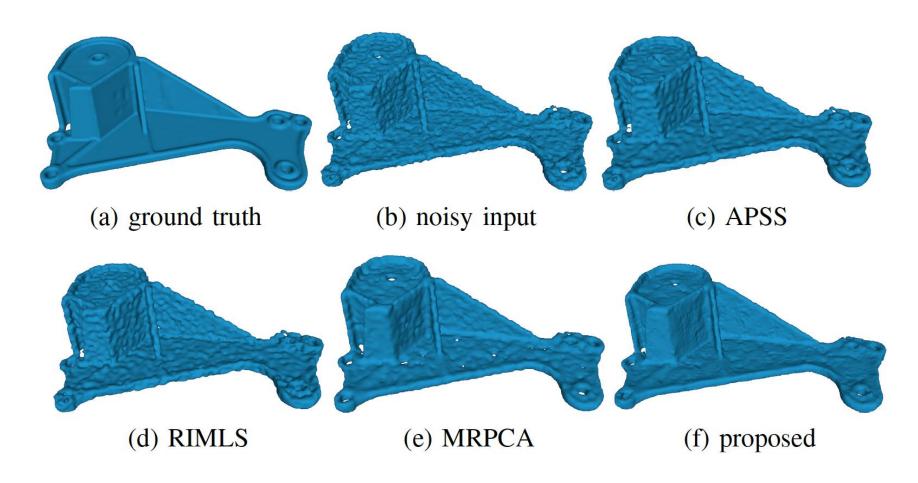
Experimental Results – Visual Comparison

Anchor model (σ =0.3)



Experimental Results – Visual Comparison

Daratech model (σ =0.3)



Reweighted Graph Total Variation (RGTV)

Graph Total Variation (GTV):

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \sum_{i,j} w_{i,j} |x_{i} - x_{j}|$$

Reweighted Graph Total Variation (RGTV):

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \sum_{i,j} w_{i,j} (x_{i}, x_{j}) |x_{i} - x_{j}|$$

- Fix edge weights W_{i,j}, solve L2-L1 norm minimization.
 Update edge weights.

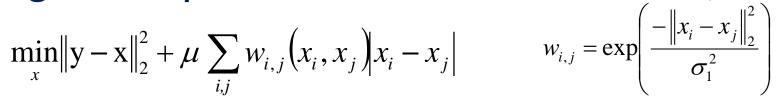
^[1] M. Hidane, O. Lezoray, and A. Elmoataz, "Nonlinear multilayered representation of graph-signals," in *Journal of Mathematical Imaging* and Vision, February 2013, vol. 45, no.2, pp. 114–137.

Reweighted Graph Total Variation (RGTV)

Graph Total Variation (GTV):

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \sum_{i,j} w_{i,j} |x_{i} - x_{j}|$$

Reweighted Graph Total Variation (RGTV):

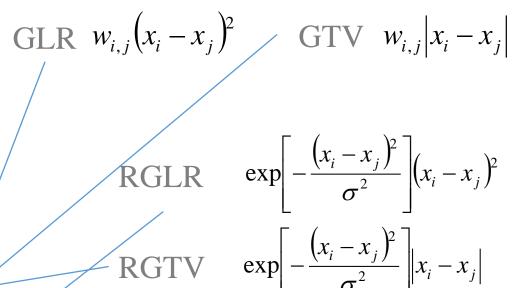


- Fix edge weights *w_{i,j}*, solve L2-L1 norm minimization.
 Update edge weights.

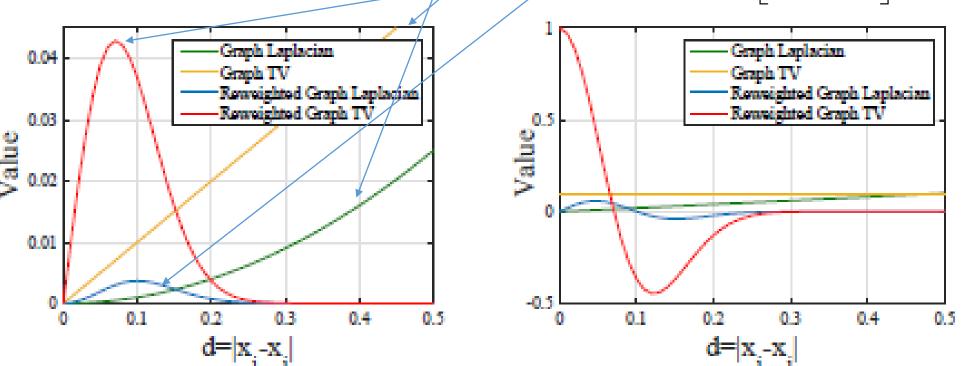
^[1] M. Hidane, O. Lezoray, and A. Elmoataz, "Nonlinear multilayered representation of graph-signals," in *Journal of Mathematical Imaging* and Vision, February 2013, vol. 45, no.2, pp. 114–137.

Why RGTV?

- RGTV promotes PWS signals.
- RGTV has better convergence,



 $\exp\left|-\frac{(x_i-x_j)^2}{\sigma^2}\right| |x_i-x_j|$



[1] Y. Bai, G. Cheung, X. Liu, W. Gao, "Graph-Based Blind Image Deblurring from a Single Photograph," accepted to IEEE Transactions 38 on Image Processing, October 2018.

Background for Image Deblurring

- Image blur is a common image degradation.
- Typically, blur process is modeled:

$$y = k \otimes x$$

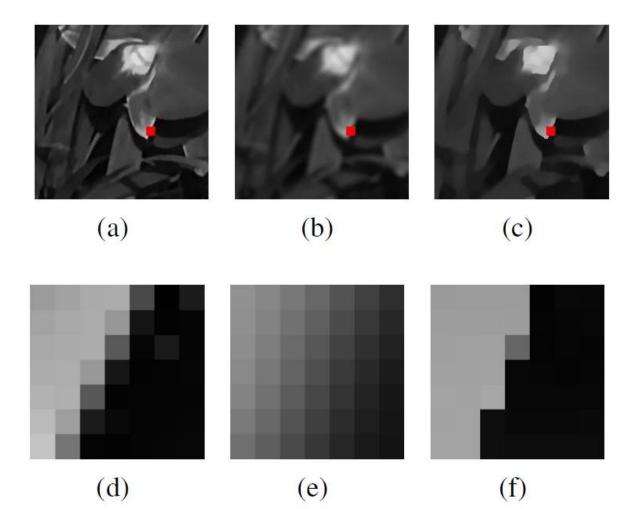
where y is the blurry image, k is the blur kernel, x is the original sharp image.

- Blind-image deblurring focuses on estimating blur kernel k.
- Given k, problem becomes de-convolution.

Observation

• Skeleton image

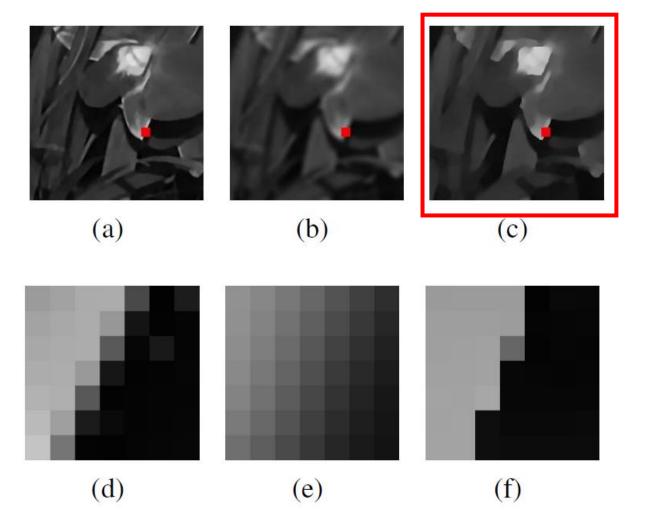
- PWS image keeping only structural edges.
- Proxy to estimate blur kernel *k*.



Observation

• Skeleton image

- PWS image keeping only structural edges.
- Proxy to estimate blur kernel *k*.



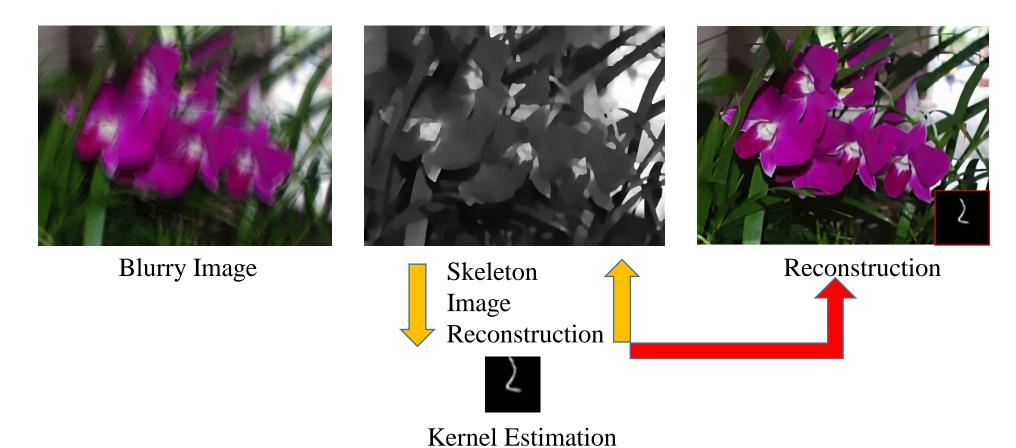
Our algorithm

- The optimization function can be written as follows, $\hat{\mathbf{x}}, \hat{\mathbf{k}} = \operatorname*{argmin} \varphi(\mathbf{x} \otimes \mathbf{k} \mathbf{b}) + \mu_1 \cdot \theta_{\chi}(\mathbf{x}) + \mu_2 \cdot \theta_k(\mathbf{k})$
- Assume L_2 norm for fidelity term $\varphi(\cdot)$.
- $\theta_{\chi}(\cdot) = RGTV(\cdot)$.
- $\theta_k(\cdot) = ||\cdot||_2$, assuming zero mean Gaussian distribution of k.
- RGTV is non-differentiable and non-convex.

Solution:

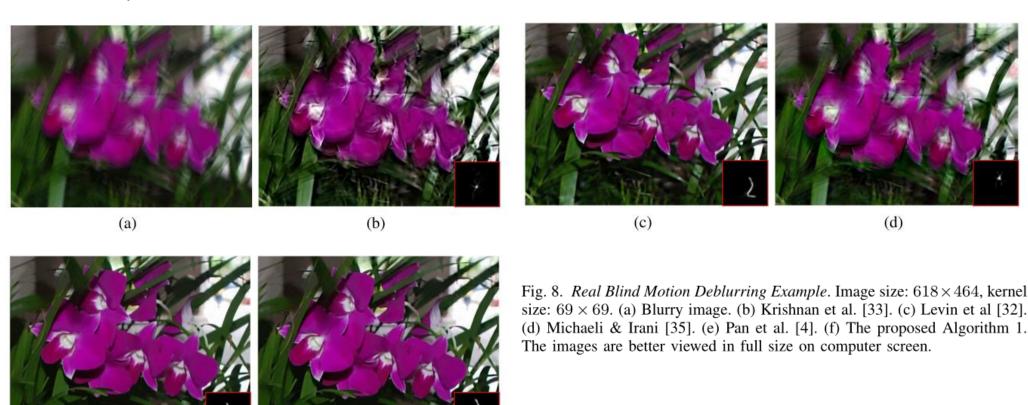
- Solve x and k alternatingly.
- For x, spectral interpretation of GTV, fast spectral filter.

Workflow



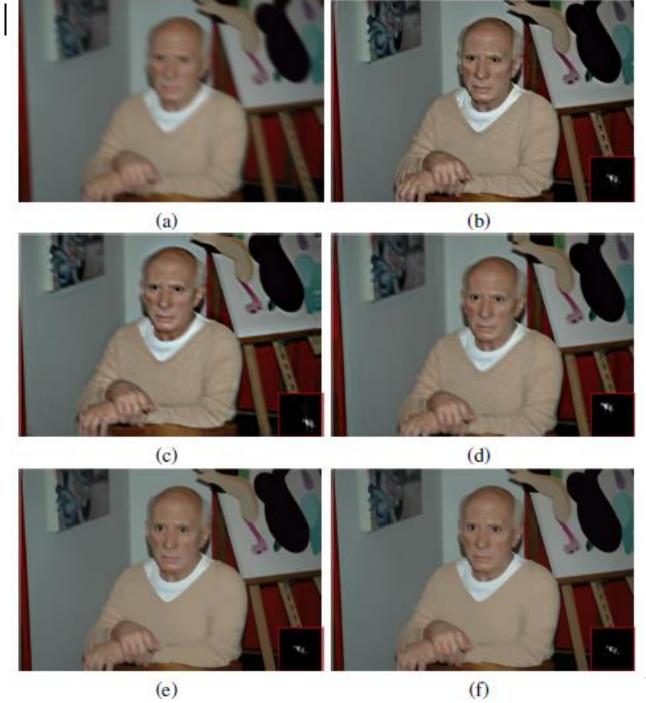
Experimental Results

(e)

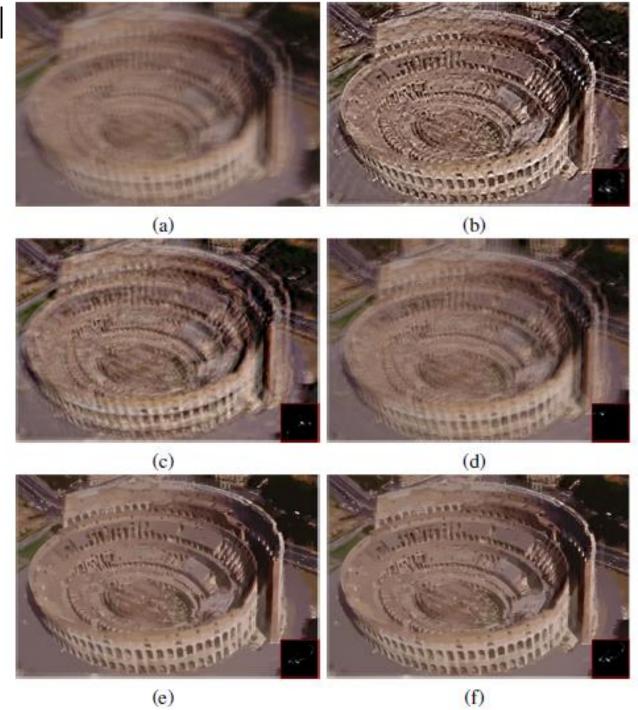


(f)

Experimental Results



Experimental Results



Outline

- GSP Fundamentals
- GSP for Image Compression
 - Graph Fourier Transform
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer (GLR)
 - Reweighted Graph TV
- Summary

Summary

- Frequencies for Graphs
 - GFT for PWS images, point cloud, light field images
- GSP for Inverse Imaging
 - PWS-promoting Graph Laplacian Regularizer, RGTV
 - Image / point cloud denoising, deblurring, contrast enhancement

Ongoing Work:

Hybrid graph-based / data-driven approach [1]

Exercise 1: Codec Design for Image Compression

- 1. Identify Image Compression Application
 - e.g., image, video, point cloud, light field, hyperspectral image
- 2. Graph Design
 - Connectivity
 - Edge Weight Assignment
- 3. Compression Tool
 - Implementation of graph transform
 - Coding of side information(?)

Exercise 2: Problem Formulation for Inverse Imaging

1. Identify Inverse Imaging Application

 e.g., denoising, super-resolution, soft-decoding of JPEG images, demosaicking, colorization, inpainting

2. Graph Design

- Connectivity
- Edge Weight Assignment

3. Problem Formulation

- Graph-signal prior: GLR, GTV, RGTV
- Constraints: quantization bin, 8-bit pixel representation
- How to solve it?

Exercise 1: Codec Design for Image Compression

- Identify Image Compression Application
 - e.g., image, video, point cloud, light field, hyperspectral image
- 2. Graph Design
 - Connectivity
 - Edge Weight Assignment
- 3. Compression Tool
 - Implementation of graph transform
 - Coding of side information(?)

Exercise 2: Problem Formulation for Inverse Imaging

- 1. Identify Inverse Imaging Application
 - e.g., denoising, super-resolution, soft-decoding of JPEG images, demosaicking, colorization, inpainting
- 2. Graph Design
 - Connectivity
 - Edge Weight Assignment
- 3. Problem Formulation
 - Graph-signal prior: GLR, GTV, RGTV
 - Constraints: quantization bin, 8-bit pixel representation
 - How to solve it?