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Introduction

Motivation

Graphs provide a flexible model to represent many datasets:

Examples in Euclidean domains

(a) (b)

1
1

.5

(c)

(a) Computer graphics2 (b) Wireless sensor networks 3 (c) image - graphs
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Introduction

Motivation

Examples in non-Euclidean settings

(a)

Combined ARQ-Queue

0

1

2

3

0 1 2 3

ARQ

Q
ue

ue
(b)

(a) Social Networks 4, (b) Finite State Machines(FSM)

Graphs can capture complex relational characteristics (e.g., spatial, topological).
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Introduction

Graph Signal Processing?

Graph: Assume fixed

Signal: set of scalars associated to graph vertices

Define familiar notions: frequency, sampling, transforms, etc

Use these for compression, denoising, interpolation, etc

A. Ortega (USC) Signal Processing on Graphs Nov. 12, 2014 6 / 59



Introduction

Examples

1
1

.5

Sensor network

Relative positions of sensors
(kNN), temperature
does temperature vary
smoothly?

Social network

friendship relationship, age
are friends of similar age?

Images

pixel positions and similarity,
pixel values
discontinuities and
smoothness
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Introduction

What do we know about transformations on Graphs?

L =


2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2

−


0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0


A and D: adjacency and degree matrices, L = D− A: graph Laplacian

L can be interpreted as a local (high-pass) operation on this graph

Circulant matrix – Eigenvectors: DFT
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Introduction

Graphs

Can we do similar things on more complex graphs?

Yes! But things get more complicated
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Introduction

Graphs


0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0



A is no longer circulant – no DFT in general, but...

Polynomials of L = D− A or A are local operators

There will be a frequency interpretation: eigenvectors of L.
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Introduction

What makes these “graph transforms”?

Graph-based shift invariance – Operator is the same, local variations
captured by A or L.

H = L = D− A

This can be generalized:

H =
L−1∑
k=0

αkLk or H =
L−1∑
k=0

αkAk

Or alternatively, based on Graph Fourier Transform
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Introduction

Summary

Localized linear operations on graphs using polynomials of A or L.

Frequency interpretation is possible for eigenvectors of A or L.

A great deal depends on the topology of the graph

In what follows we consider mostly undirected graphs without self
loops and use L.
[Shuman, Narang, Frossard, Ortega, Vandergheysnt, SPM’2013]

Other approaches are possible based on A
[Sandryhaila and Moura 2013]
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Introduction

Research Goals

Extend signal processing methods to arbitrary graphs

Downsampling, graph-frequency localization, multiresolution,
wavelets, interpolation

Outcomes

Work with massive graph-datasets: localized “frequency” analysis
Novel insights about traditional applications (image/video
processing)
New applications

This talk

Graph Signal Processing – intro
Graph Filterbank design
Applications

Depth image coding
Semi-supervised learning (2nd talk!)

A. Ortega (USC) Signal Processing on Graphs Nov. 12, 2014 13 / 59



Introduction Basic Theory

Graphs 101

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11
12

13

14

15

16

17

18

19

20

21 22 23

24 25 26

27

Graph G = (V,E ,w).

Adjacency matrix A

Degree matrix D = diag{di}
Laplacian matrix L = D− A.

Normalized Laplacian matrix
L = D−1/2LD−1/2

Graph Signal
f = {f (1), f (2), ..., f (N)}

Assumptions:

1. Undirected graphs without self loops.
2. Scalar sample values
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Introduction Basic Theory

Spectrum of Graphs

Graph Laplacian Matrix L = D− A = UΛU′

Eigen-vectors of L : U = {uk}k=1:N

Eigen-values of L : diag{Λ} = λ1 ≤ λ2 ≤ ... ≤ λN

Eigen-pair system {(λk ,uk)} provides Fourier-like interpretation
— Graph Fourier Transform (GFT)
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Introduction Basic Theory

Graph Frequencies

(a) λ = 0.00 (b) λ = 0.04 (c) λ = 1.20 (d) λ = 1.55

(a) ω = π/4 ×0 (b) ω = π/4 ×1 (c) ω = π/4 ×4 (d) ω = π/4 ×7

Eigenvectors of an arbitrary graph

DCT basis for regular signals
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Introduction Basic Theory

Eigenvectors of graph Laplacian

(a) λ = 0.00 (b) λ = 0.04 (c) λ = 0.20

(d) λ = 0.40 (e) λ = 1.20 (f) λ = 1.49
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Introduction Basic Theory

Graph Transforms

Input Signal Transform Output Signal 
Processing/

Analysis

Desirable properties

Invertible
Critically sampled
Orthogonal
Localized in graph (space) and graph spectrum (frequency)

Local Linear Transform

Can we define Graph Wavelets?
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Wavelet Transforms on Arbitrary Graphs

Next Section

1 Introduction

2 Wavelet Transforms on Arbitrary Graphs

3 Applications

4 Conclusions
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Wavelet Transforms on Arbitrary Graphs

Discrete Wavelet Transforms in 2 slides – 1

(d) (e)

From Vetterli and Kovacevic, Wavelets and Subband Coding, ’95
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Wavelet Transforms on Arbitrary Graphs

Discrete Wavelet Transforms in 2 slides – 2

(a) (b)

Note: Filters have some frequency and space localization
From Vetterli and Kovacevic, [Ding’07]
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Wavelet Transforms on Arbitrary Graphs Graph Transforms – Prior Work

Prior Work – Spectral Graph Transforms

Designed in the spectral domain of the graph. Examples:

Diffusion Wavelets [Coifman and Maggioni 2006]
Spectral Wavelets on Graphs [Hammond et al. 2011]

Spectral Wavelet transforms [Hammond et al. 2011]:

Design spectral kernels: h(λ) : σ(G )→ R.

Th = h(L) = Uh(Λ)Ut

where
h(Λ) = diag{h(λi )}
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Wavelet Transforms on Arbitrary Graphs Graph Transforms – Prior Work

Spectral Graph Transforms Cont’d

Output Coefficients:

wf = Thf =
∑

λ∈σ(G)

h(λ).f̄ (λ)uλ

Polynomial kernel approximation:

h(λ) ≈
K∑

k=0

akλ
k

Th ≈
K∑

k=0

akLk

K -hop localized: no spectral decomposition required.
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Wavelet Transforms on Arbitrary Graphs Graph Transforms – Prior Work

Graph Filterbank Designs

Formulation of critically sampled graph filterbank design problem

Design filters using spectral techniques [Hammond et al. 2009].

Orthogonal (not compactly supported) [IEEE TSP June 2012]

Bi-Orthogonal (compactly supported) [IEEE TSP Oct 2013]

analysis side synthesis side

filter downsample upsample filter

- -
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Wavelet Transforms on Arbitrary Graphs Downsampling in Graphs

Downsampling/Upsampling in Graphs

Downsampling-upsampling operation:

Regular Signals:

fdu(n) =

{
f (n) if n = 2m
0 if n = 2m + 1

Graph signals:

fdu(n) =

{
f (n) if n ∈ S
0 if n /∈ S

for some set S.

(a) regular signal (b) regular signal after DU by 2

(c) graph signal (d) graph signal after DU by 2

For regular signals DU by 2 operation is equivalent to
Fdu(e jω) = 1/2(F (e jω) + F (e−jω)) in the DFT domain.

What is the DU by 2 for graph signals in GFT domain?
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

Downsampling in Graphs

Define Jβ = JβH = diag{βH(n)}.
In vector form:

fdu =
1

2
(f + Jβf)

=
1

2
(f + f̃)

Spectral Folding [4]: For a bipartite graph f̃ (λ) = f (2− λ).
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

Graph filterbanks

Filters designed in spectral domain (as [Hammond et al, 2009])

Analysis:

hi (λ) : R→ R for i = 0, 1
Hi = hi (L) = Uhi (Λ)Ut

Synthesis:

gi (λ) : R→ R
Gi = gi (L)

analysis side synthesis side

filter downsample upsample filter

- -
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

Wavelet filterbanks on bipartite graphs

Aliasing Cancellation ⇒ B = 0 if for all λ ∈ σ(G ):

B(λ) = g1(λ)h1(2− λ)− g0(λ)h0(2− λ) = 0

Perfect Reconstruction ⇒ A = cI if for all λ ∈ σ(G ):

A(λ) = g1(λ)h1(λ) + g0(λ)h0(λ) = c
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

GraphBior design

Analogous to CDF wavelet Filters [Narang and Ortega, IEEE TSP, 2013]

Choose kernels, s.t.,

h0(λ) = g1(2− λ)

g0(λ) = h1(2− λ),

for aliasing cancellation (B = 0).

The PR condition (A = 0) becomes:

h1(λ)g1(λ)︸ ︷︷ ︸
p(λ)

+ h1(2− λ)g1(2− λ)︸ ︷︷ ︸
p(2−λ)

= c

Design p(λ) as a “maximally flat” polynomial and factorize into
h1(λ), g1(λ) terms. Exact reconstruction with polynomial filter
(compact support).
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Wavelet Transforms on Arbitrary Graphs Bipartite Subgraph Decomposition

Bipartite Subgraph Decomposition

But not all graphs are bipartite...

Solution: “Iteratively” decompose non-bipartite graph G into K
bipartite subgraphs:

each subgraph covers the same vertex set.
each edge in G belongs to exactly one bipartite graph.
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Wavelet Transforms on Arbitrary Graphs Bipartite Subgraph Decomposition

Bipartite Subgraph Decomposition

Example of a 2-dimensional (K = 2) decomposition:
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Wavelet Transforms on Arbitrary Graphs Bipartite Subgraph Decomposition

“Multi-dimensional” Filterbanks on graphs

Two-dimensional two-channel filterbank on graphs:

2

2

2

2

2

2

2

2

Advantages:

Perfect reconstruction and orthogonal for any graph and any bpt
decomposition.
defined metrics to find ”good” bipartite decompositions.
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Wavelet Transforms on Arbitrary Graphs Example

Example

Minnesota traffic graph and graph signal
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Wavelet Transforms on Arbitrary Graphs Example

Example

Bipartite decomposition
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Wavelet Transforms on Arbitrary Graphs Example

Example

 

 

−2 0 2

 

 

−0.1 0 0.1

 

 

−0.1 0 0.1

LL Channel LH Channel

HH ChannelHL Channel

Empty Channel

Output coefficients of the proposed filterbanks with parameter m = 24.
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Wavelet Transforms on Arbitrary Graphs Example

Example

 

 

−1 0 1

 

 

−0.1 0 0.1

 

 

−1 0 1

 

 

−0.05 0 0.05

LL Channel LH Channel

HL Channel HH Channel

Reconstructed graph-signals for each channel.
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Applications

Next Section

1 Introduction

2 Wavelet Transforms on Arbitrary Graphs

3 Applications

4 Conclusions
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Applications Edge Aware Image Processing

Depth Image Coding [Narang, Chao and Ortega, 2013]

Block Diagram

Edge  
Detection 

Graph 
Selection 

Edge 
Encoding 

(JBIG) 

Graph-based 
Wavelet Transform  

Wavelet Coefficients  
Encoding 
(SPIHT) 

GraphBior 
Filterbanks 

Output  
Bit stream  Input Image 

Advantage:
Link-weights can be adjusted to reflect geometrical structure of
the image.
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Applications Edge Aware Image Processing

Depth Image Coding [Narang, Chao and Ortega, 2013]

CDF	  9/7	   Graph	  9/7	  

Advantage:
Link-weights can be adjusted to reflect geometrical structure of
the image.
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Applications Edge Aware Image Processing

Depth Image Coding [Narang, Chao and Ortega, 2013]

Edge detection: Prewitt

Laplacian Normalization:
Random Walk Laplacian

Filterbanks: GraphBior 4/3 and
CDF 9/7

Unreliable Link Weight: 0.01

Transform level: 5

Encoder: SPIHT
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Conclusions
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Conclusions

What makes these “graph transforms”?

Graph-based shift invariance:

H =
L−1∑
k=0

αkLk or H =
L−1∑
k=0

αkAk

Graph Fourier Transform

H = h(L) = Uh(Λ)U
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Conclusions

Conclusions

Extending signal processing methods to arbitrary graphs:
Downsampling, Space-frequency, Multiresolution, Wavelets

Many open questions: very diverse types of graphs, results may apply
to special classes only

Outcomes

Work with massive graph-datasets: potential benefits of localized
“frequency” analysis
Novel insights about traditional applications (image/video
processing)

To get started:
[Shuman, Narang, Frossard, Ortega, Vandergheysnt, SPM’2013]
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