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Oversampled Graph Transforms Introduction

Conventional Graph Filter Banks (GFBs)

I Undecimated GFBs (redundancy: M)
I Spectral graph wavelets (SGWT) [Hammond et al. 2011]
I Tight graph wavelets [Leonardi et al. 2013], [Shuman et al. 2014]

I Critically sampled GFBs (redundancy: 1)
I Two-channel orthogonal GFBs [Narang and Ortega 2012]
I Two-channel biorthogonal GFBs [Narang and Ortega 2013]

Figure: Critically sampled graph filter bank.
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Oversampled Graph Transforms Introduction

Oversampled Graph Transforms

I Graph transforms with redundancy R (1 < R < M)
I Topics:

I Perfect reconstruction condition
I Redundancy
I Design method

graph

oversampling

graph    

undersampling

Figure: Graph oversampling followed by M-channel oversampled graph filter bank.
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Oversampled Graph Transforms Introduction

Oversampling Graph Signals

Two possibilities to oversample graph signals:
1. Oversampling-then-filtering by oversampled graph Laplacian

matrix [Sakiyama and Tanaka 2014]
I Simultaneous oversampling of graph signal and graph Laplacian matrix

2. Transformation by M (> 2) filters by oversampled GFBs [Tanaka

and Sakiyama 2014]

GFT

IGFT

IGFT

IGFT

Graph

oversampling

Figure: Signal processing flow of oversampled graph filter bank. Symbols just below the skewed
lines indicate the number of signals at typical positions.
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Oversampled Graph Transforms Graph Oversampling

Oversampled Graph Laplacian Matrix

I Original GLM of size N0 × N0: L0 = D0 − A0

I Oversampled GLM of size N1 × N1

L̃ = D̃−1/2L̃D̃−1/2

where

L̃ = D̃− Ã

Ã =

[
A0 A01

AT
01 0N1−N0

]
I Ã, D̃: oversampled adjacency/degree matrix
I A01: edge information between original nodes and appended ones
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Oversampled Graph Transforms Graph Oversampling

Effective Graph Expansion Methods

I How to choose a good A01?
I Oversampled bipartite graphs with all edges of the original graph

I If oversampled graph is bipartite:
I GFBs with downsampling can be used.
I We can control the overall redundancy.

I Our work (partially) answers the following questions:
I Can any graphs be converted into an oversampled bipartite graph?
I Systematic construction method?
I Relationship to graph theory?
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Oversampled Graph Transforms Graph Oversampling

Conversion of K -colorable graph

I One K -colorable graph → dlog2 Ke bipartite subgraphs [Harary et al.

1977], [Narang and Ortega 2012]

I Bipartite subgraphs can be merged into one OS bipartite graph.

I Step-by-step example: Conversion of 3-colorable graph

Definition

I F1 to F3: Colored node sets

I B1: Subgraph 1 (having edges linking F1 ∪ F2 and F3)

I B2: Subgraph 2 (having edges linking F1 and F2)
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Oversampled Graph Transforms Graph Oversampling

Oversampled Graph Construction

Step 1: Decide foundation bipartite graph

I Foundation bipartite graph: 1st (or ground) floor of OS graph

I In this example, we chose B1 as the foundation bipartite graph.

(a) Original graph (b) Foundation bpt. graph

Figure: OS bpt. graph construction
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Oversampled Graph Transforms Graph Oversampling

Oversampled Graph Construction

Step 2: Append and connect oversampled nodes

1. Additional nodes F ′1 and F ′2 are placed just above F1 and F2.

2. Connect F ′1 and F2 and F ′2 and F1.

(a) Original graph (b) OS bpt. graph (c) L̃ and H̃

Figure: OS bpt. graph construction
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Oversampled Graph Transforms Graph Oversampling

K -Colorable Case

I Similar construction to the 3-colorable case

I Freedom for choosing the foundation bipartite graph

(a) Original graph (b) Foundation
bpt. graph

(c) Remaining
edges

(d) OS bpt. graph

Figure: OS bpt. graph construction for a five-colorable graph
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Oversampled Graph Transforms Graph Oversampling

Example: Graph Oversampling of Ring Graph

I Ring graph with odd # of
nodes: 3-colorable

I Critically sampled bpt. graphs
I # of nodes are heavily biased.
I A few relationships btw nodes

becomes very weak.

I Oversampled bpt. graphs
I # of nodes are (almost) even.
I Small redundancy:

(2n + 3)/(2n + 1)
I Strong connection

(a) Original graph (b) OS bpt. graph

(c) Bpt.
subgraph 1

(d) Bpt.
subgraph 2

(e) L̃ and H̃
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Oversampled Graph Transforms Graph Oversampling

Relationship w/ Bipartite Double Cover (BDC)

BDC of G: G̃BDC = G ⊗ K2 (K2: complete graph of two vertices)

I Adjacency matrix: ÃBDC =

[
0 A
A 0

]
I Normalized GLM: L̃BDC =

[
I −D−

1
2 AD−

1
2

−D−
1
2 AD−

1
2 I

]
I 2N nodes and 2|E| edges in G̃BDC (redundancy: 2)

(f) BDC (g) L̃ and H̃

Figure: Bipartite graph cover for a 3-colorable graph
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Oversampled Graph Transforms Graph Oversampling

Graph Fourier Spectrum of BDC

I Eigenvalues and eigenvectors
I uλi : eigenvector of L (original graph)

Eigenvectors of L̃BDC

ũ
λ̃i

= 1√
2

[uT
λi

uT
λi

]T (λ̃i = λi ), 1√
2

[uT
λi
− uT

λi
]T (λ̃i = 2− λi )

I Graph Fourier coefficients of f̃ = [f T
0 f T

0 ]T

I ũT
λi

f̃ = 1√
2

[
uT
λi

uT
λi

] [f0

f0

]
=
√

2uT
λi

f0 =
√

2f0(λi )

I ũT
2−λi

f̃ = 1√
2

[
uT
λi
−uT

λi

] [f0

f0

]
= 0

I # of nonzero coefficients: N

I Spectrum of BDC = Spectrum of the original graph
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Oversampled Graph Transforms Graph Oversampling

Graph Fourier Spectrum of OS Bipartite Graph

I Adjacency and degree matrix: Ã =

[
Af Ar

Ar 0

]
, D̃ =

[
D 0
0 Dr

]
I Af : Adjacency matrix of the foundation bpt. graph
I Ar : Adjacency matrix of the remaining graph
I A = Af + Ar , D = Df + Dr

I Normalized GLM: L̃ =

[
I−D−

1
2 Af D−

1
2 −D−

1
2 ArD

− 1
2

r

−D
− 1

2
r ArD

− 1
2 I

]
I L̃ has the eigenvector ũλi = 1√

2
[uT
λi

uT
λi

]T with

λ̃i = λi ⇐⇒ Dr = D (= BDC)

I → BDC is a special case of the oversampled GLM.
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Oversampled Graph Transforms Graph Oversampling

Experimental Results

Nonlinear approximation of images
I All lowpass + some fractions of highpass coefficients
I Compared with

I CDF 9/7 DWT
I Laplacian pyramid with 9/7 DWT
I GraphBior [Narang and Ortega 2012]
I Graph Laplacian pyramid [Shuman et al. 2013]

Figure: Left: Cameraman (256× 256). Right: Ballet (512× 512).
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Oversampled Graph Transforms Graph Oversampling

Experimental Results

NLA: PSNR comparison
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Figure: Left: Cameraman. Right: Ballet.
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Oversampled Graph Transforms Graph Oversampling

Experimental Results

Side-by-side quality comparison: All lowpass + 3% highpass

(a) Original (b) 9/7 DWT (c) LP

(d) GraphBior (e) Graph LP (f) OSGLM

Figure: Reconstructed Coins image
Yuichi Tanaka (TUAT) PCSJ/IMPS 2014 Nov. 12, 2014 21 / 49



Oversampled Graph Transforms Graph Oversampling

Experimental Results

Graph signal denoising: SNR comparison

Table: Denoised Results of Minnesota Traffic Graph: SNR (dB)

σ noisy sym8 sym8 graphBior GLP
(1 level) (5 levels) (CSGLM)

1/32 30.15 30.17 30.22 31.44 31.39
1/16 24.08 24.25 24.07 25.61 25.68
1/8 18.06 18.65 17.99 19.97 20.02
1/4 12.02 11.94 11.07 14.19 14.24
1/2 5.99 6.23 5.76 8.50 8.51

1 -0.02 1.59 3.13 2.63 2.61

Redundancy - 1.00 1.00 1.00 2.05

σ SGWT OSGFB graphBior graphBior OSGFB
(CSGLM) (BDC) (OSGLM) (OSGLM)

1/32 33.35 34.75 32.54 32.46 35.08
1/16 27.76 28.78 26.75 26.76 29.34
1/8 22.08 21.84 20.81 20.88 23.17
1/4 15.05 15.26 14.79 14.94 17.63
1/2 10.33 10.29 8.92 9.00 12.31

1 8.82 4.24 3.03 3.11 7.04

Redundancy 4.00 4.00 2.00 1.37 2.74
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Oversampled Graph Transforms Graph Oversampling

Experimental Results

Graph signal denoising: Side-by-side comparison

(a) Minnesota Traffic
Graph
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(b) Graph signal

(c) Bpt. subgraph 1 (d) Bpt. subgraph 2

Figure: Minnesota Traffic Graph
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(e) graphBior with
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(f) OSGFB with OSGLM:
R = 2.74 (12.31 dB)

Figure: Denoising results of Minnesota Traffic Graph.
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Oversampled Graph Transforms Oversampled Graph Filter Banks

Notations

I Eigenspace projection matrix: P̃λi :=
∑

λ=λi
ũλũT

λ

I k-th analysis filter: Hk =
∑

λi∈σ(L̃)
hk(λi )P̃λi (synthesis: Gk)

I hk(λ), gk(λ): filter kernel (real function for 0 ≤ λ ≤ λmax = 2)
I fout = Udiag{hk(λi )}UT fin

Figure: Oversampled graph filter bank.
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Oversampled Graph Transforms Oversampled Graph Filter Banks

Perfect Reconstruction Condition

Transfer function

T =
1

2

∑
λi

M−1∑
k=0

gk(λi )hk(λi )︸ ︷︷ ︸
Amplitude term

P̃λi

+
1

2

∑
λi

M
2
−1∑

k=0

{−gk(λi )hk(2− λi ) + gk+M
2

(λi )hk+M
2

(2− λi )}︸ ︷︷ ︸
Spectral folding term

P̃λi J

leads to the following condition similar to the critically sampled case:

I

M−1∑
k=0

gk(λ)hk(λ) = 2

I

M
2
−1∑

k=0

−gk(λi )hk(2− λi ) + gk+M
2

(λi )hk+M
2

(2− λi ) = 0
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Oversampled Graph Transforms Oversampled Graph Filter Banks

Perfect Reconstruction Condition

I Spectral folding effect can be cancelled with the following filter
selection:

gk(λ) = hk+M/2(2− λ), gk+M/2(λ) = hk(2− λ)

I Product filters pk(λ) = gk(λ)hk(λ) must satisfy

M/2−1∑
k=0

pk(λ) + pk(2− λ) = 2
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Oversampled Graph Transforms Oversampled Graph Filter Banks

Design of Oversampled Graph Filter Banks

Design methodology

1. Design two-channel halfband filters.

2. Design arbitrary M − 2 filters.

3. Subtract M − 2 product filters from the two-channel halfband filter
and factorize it to obtain remaining 2 filters.
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Oversampled Graph Transforms Oversampled Graph Filter Banks

Design Examples

I OSGFB designs for different # of zeros of halfband filters

I Filter length (polynomial order): 10 for lowpass 11 for highpass
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Figure: Four-channel oversampled graph filter banks (black lines indicate graphBior(6,6)
[Narang and Ortega 2013])
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Oversampled Graph Transforms Oversampled Graph Filter Banks

Graph Signal Decomposition

1. Coins image
I Edge-aware image

graph

2. Minnesota Traffic Graph
I Three-colorable graph
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Figure: Graph signals used. Left: Coins. Right:
Minnesota Traffic Graph
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Oversampled Graph Transforms Oversampled Graph Filter Banks

original

Figure: Multiresolution Coins image after three-level decomposition using the oversampled
graph filter bank. The original image on the same scale is shown at the top right. The values of
the transformed coefficients are scaled to be in the range [0, 1] for the sake of visualization.
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Figure: Graphs decomposed by the proposed oversampled graph filter bank. We use a
two-dimensional four-channel filter bank leading to 42 = 16 channels. Note that the graph is
three-colorable: therefore, channels 8, 9, 12, and 13 (corresponding to the HL channel for the
critically sampled filter banks) are empty.
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Image Processing Image Denoising with Collaborative Graph Wavelet Shrinkage

BM3D: Image Denoising State-of-the-Art

Two-step algorithm in BM3D
[Dabov et al. 2007]

1. Basic estimate

1.1 Grouping
1.2 Collaborative

separable filtering +
hard-thresholding

1.3 Aggregation

2. Final estimate

2.1 Grouping
2.2 Collaborative Wiener

filtering
2.3 Aggregation

Block matching

Input image

Collaborative filtering

3-D transform

Hard thresholding

Inv. 3-D transform

Weight

Aggregation

Basic-estimated image

Figure: Basic estimate of BM3D
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Image Processing Image Denoising with Collaborative Graph Wavelet Shrinkage

Problem on BM3D

I BEST objective performance
I Problems due to aggregation and Wiener filtering

1. Unnatural artifacts
2. Oversmoothing

(a) (b)

Figure: (a) original, (b) denoised image by BM3D
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Image Processing Image Denoising with Collaborative Graph Wavelet Shrinkage

Collaborative Graph Wavelet Shrinkage

I Improved basic estimate
step based on graph signal
processing

I Algorithm

1. Grouping
2. Inter-/Intra-patch

graph construction
3. Collaborative filtering

with graph wavelets +
hard-thresholding

4. Aggregation

Figure: CGWS
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Image Processing Image Denoising with Collaborative Graph Wavelet Shrinkage

Experiments on Depth Map Denoising

I Depth map: Piecewise smooth (constant) images
I Depth maps used (all from Middlebury Stereo Datasets)

I art (512× 512), ballet (512× 512), Ryerson (512× 512), cones
(450× 375), teddy (450× 375)

I Corrupted by AWGN with σ = 10, 30, 50, 100
I Comparison with

I Gaussian filtering + L0 Smoothing [Xu et al. 2011]
I K-SVD [Aharon and Elad 2006]
I BM3D

Figure: Left: cones. Right: teddy.
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Image Processing Image Denoising with Collaborative Graph Wavelet Shrinkage

Experimental Results: PSNR Comparisons

σ/PSNR method art ballet Ryerson cones teddy

10 / 28.14

GF+L0-Sm 31.27 32.01 31.13 29.69 29.38
K-SVD 40.74 41.59 40.49 39.10 39.23
BM3D 41.14 43.19 41.54 40.41 41.20
prop. 42.03 43.69 41.81 40.84 41.32

30 / 18.59

GF+L0-Sm 30.65 31.10 29.99 28.99 28.15
K-SVD 32.71 34.21 33.88 32.04 32.32
BM3D 33.51 35.81 35.00 32.65 33.20
prop. 34.32 36.63 35.66 33.53 33.75

50 / 14.16

GF+L0-Sm 29.53 30.41 29.02 28.06 27.46
K-SVD 29.54 30.98 30.91 28.88 29.23
BM3D 30.91 32.59 32.23 29.58 29.80
prop. 31.58 33.65 33.05 30.50 30.52

100 / 8.14

GF+L0-Sm 26.76 27.99 26.36 25.57 25.26
K-SVD 25.63 26.21 26.74 25.19 25.10
BM3D 27.83 29.08 28.86 26.58 26.52
prop. 28.10 29.78 28.91 27.08 26.75
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Image Processing Image Denoising with Collaborative Graph Wavelet Shrinkage

Experimental Results: Side-by-Side Comparisons

teddy, σ = 100

(a) Original (b) Noisy (c) GF+L0

(d) K-SVD (e) BM3D (f) CGWS
Figure: Denoising results.
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Image Processing Trilateral Filter on Graph Spectral Domain

Image Processing with Nonlocal Filters

I Many nonlocal filters and processing so far
I Bilateral filter : Two Gaussian weights for distance and pixel values
I Weights between i and j-th pixels:

wij = exp

(
−||pi − pj ||2

2σ2
c

)
exp

(
− (xi − xj)

2

2σ2
s

)
pi : Coordinate of i-th pixel, xi : i-th pixel value, σc , σs : Std. dev. for
Gaussian function

I Trilateral filter : Extension of bilateral filter
I Gradient and pixel smoothing with BF
I High smoothing performance (compared to bilateral filter)
I Image filtering, tone-mapping of high dynamic range imaging

Problem of nonlocal filters

Pixel-dependent filtering: No expression in frequency domain
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Bilateral Filter in Graph Spectral Domain

I Graph signal processing enables to
represent nonlocal filters on graph
spectral domain [Gadde et al. 2013].

I x, x̂: Vectorized input and output pixels

I W = [wij ], Djj =
∑

j wij

I Graph bilateral filter:

x̂ = D−1Wx

= U︸︷︷︸
Inv. GFT

(I− Λ)︸ ︷︷ ︸
Graph LPF

UT︸︷︷︸
GFT

x

→ h(λ) = 1− λ

I Graph filter kernels can be arbitrary
changed according to applications.
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Figure: Kernels of graph bilateral filter
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Graph Trilateral Filter

I Gradient smoothing can also be represented as graph spectral filters:
Double lowpass filters in graph spectral domain

I Algorithm
1. Calculate image gradient and construct gradient graph
2. Gradient smoothing by graph bilateral filter
3. construct image graph with smoothed gradient
4. Pixel value smoothing by graph bilateral filter

I Both smoothing filters can be chosen arbitrary
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Experimental Results

I AWGN denoising experiment

I Test images (128× 128): Lena, Watch, Boat, and Monarch

I White gaussian noise : σ = 20, 30, 40, 50

I Comparison with regular/graph bilateral filter and regular trilateral
filter
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Experimental Results: PSNR Comparisons

Table: Denoising Results: PSNR (dB)

Images σ 50 40 30 20

Noisy – 14.16 16.09 18.59 22.13

Lena

BF 15.71 17.99 21.34 26.21
TF 16.09 18.63 21.27 25.59

SGBF 16.11 18.57 22.06 26.69
Proposed 20.55 22.56 24.80 27.81

Watch

BF 15.74 17.93 21.55 26.47
TF 16.59 18.93 21.88 26.17

SGBF 16.21 18.68 22.06 26.66
Proposed 20.63 22.36 24.59 27.65

Boat

BF 16.06 18.27 21.39 26.27
TF 16.60 18.54 21.98 25.52

SGBF 16.32 18.58 21.97 26.45
Proposed 20.69 22.32 24.94 27.42

Monarch

BF 15.83 18.03 21.12 26.01
TF 16.55 18.53 20.91 24.54

SGBF 16.04 18.48 21.83 26.11
Proposed 20.46 22.05 24.26 27.25
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Experimental results: Side-by-Side Comparison

Lena, σ = 30
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Conclusions

Conclusions

I Oversampled graph transforms
I Graph oversampling with oversampled graph Laplacian matrix
I Oversampled graph filter banks
I Good for graph signal analysis and reasonable redundancy

I Image processing
I Modification of BM3D with collaborative graph wavelet shrinkage
I Image smoothing by graph-based trilateral filter
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Further Reading

I Papers and Proceedings
1. A. Sakiyama and Y. Tanaka, “Oversampled graph Laplacian matrix for graph

filter banks,” IEEE Trans. Signal Process., 2014, in press. (Open Access)
2. Y. Tanaka and A. Sakiyama, “M-channel oversampled graph filter banks,”

IEEE Trans. Signal Process., vol. 62, no. 14, pp. 3578–3590, 2014. (Open
Access)

3. Y. Iizuka and Y. Tanaka, “Depth map denoising using collaborative graph
wavelet shrinkage on connected image patches,” ICIP 2014, Paris, France,
Oct. 2014.

4. M. Onuki and Y. Tanaka, “Trilateral filter on graph spectral domain,” ICIP

2014, Paris, France, Oct. 2014.

I Review Article ( in Japanese! )
1. Y. Tanaka, “Recent Advances in Signal Processing on Graphs,” IEICE

Fundamentals Review, vol. 8, no. 1, pp. 15–29, 2014.

I MATLAB codes and slides
I http://tanaka.msp-lab.org/software
I http://tanaka.msp-lab.org/bio
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