
Active Semi-supervised Learning Using Sampling Theory
for Graph Signals

Akshay Gadde, Aamir Anis and Antonio Ortega

University of Southern California

Nov 12, 2014

PCSJ/IMPS 2014 Active SSL using sampling theory for graph signals 1 / 21



Motivation and Problem Definition

I Unlabeled data is abundant. Labeled data is expensive and scarce.

I Solution: Active Semi-supervised Learning (SSL).

I Problem setting: Offline, pool-based, batch-mode active SSL via graphs
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Sampling rate of B allows perfect 
reconstruction of signals with 
bandwidth B/2

For graph signals, different sampling patterns 
uniquely represent signals of different bandwidths.

For given budget, choose  a sampling pattern that 
can represent signals of maximum bandwidth.

Problem

MethodologyExtending Nyquist Shannon sampling theory to signals on graphs

ProposedLLGC boundLLRΨ-max

Result

1. How to predict unknown labels from the known labels?

2. What is the optimal set of nodes to label given the learning algorithm?
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Graph Signal Processing

I Graph G = (V, E) with N nodes

I nodes ≡ data points; wij : similarity between i and j .

I Adjacency matrix W = [wij ]n×n.

I Degree matrix D = diag{∑j wij}.
I Laplacian L = D−W.

I Normalized Laplacian L = D−1/2LD−1/2.
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I Graph signal f : V → R, denoted as f ∈ RN .

I Class membership functions are graph signals.

fc(j) =

{
1, if node j is in class c
0, otherwise
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Notion of Frequency for Graph Signals

Spectrum of L provides frequency interpretation:

I λk ∈ [0, 2]: graph frequencies.

I uk : graph Fourier basis.

ω = π/4 x 0

ω = π/4 x 1 ω = π/4 x 4 ω = π/4 x 7

λ = 0
λ = 0.27 λ = 1.32 λ = 1.59

I Fourier coefficients of f: f̃(λi ) = 〈f, ui 〉.
I Graph Fourier Transform (GFT):

f̃ = UT f.
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Bandlimited Signals on Graphs

I ω-bandlimited signal: GFT has support [0, ω].

I Paley-Wiener space PWω(G): Space of all ω-bandlimited signals.

I PWω(G) is a subspace of RN .
I ω1 ≤ ω2 ⇒ PWω1 (G) ⊆ PWω2 (G).

I Bandwidth of a signal:

ω(f) = arg max
λ

f̃(λ) s.t. |̃f(λ)| ≥ 0

I Class membership functions can be approximated by bandlimited graph
signals.
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Figure 3: Cumulative distribution of energy in the GFT coefficients of one of the class membership functions pertaining to
the three real-world dataset experiments considered in Section 5. Note that most of the energy is concentrated in the low-pass
region.

term is expected to be negligible as compared to the first
one due to differencing, and we get

xtLx ≈
�

j∈Sc

�
pj

dj

�
x2

j , (24)

where, pj =
�

i∈S wij is defined as the “partial out-degree”
of node j ∈ Sc, i.e., it is the sum of weights of edges crossing
over to the set S. Therefore, given a current selected S, the
greedy algorithm selects the next node, to be added to S,
that maximizes the increase in

Ω1(S) ≈ inf
||x||=1

�

j∈Sc

�
pj

dj

�
x2

j . (25)

Due to the constraint ||x|| = 1, the expression being mini-
mized is essentially an infimum over a convex combination
of the fractional out-degrees and its value is largely deter-
mined by nodes j ∈ Sc for which pj/dj is small. In other
words, we must worry about those nodes that have a low
ratio of partial degree to the actual degree. Thus, in the
simplest case, our selection algorithm tries to remove those
nodes from the unlabeled set that are weakly connected to
nodes in the labeled set. This makes intuitive sense as, in
the end, most prediction algorithms involve propagation of
labels from the labeled to the unlabeled nodes. If an unla-
beled node is strongly connected to various numerous points,
its label can be assigned with greater confidence.

Note that using a higher power k in the cost function,
i.e., finding Ωk(S) for k > 1 involves xLkx which, loosely
speaking, takes into account higher order interactions be-
tween the nodes while choosing the nodes to label. In a
sense, we expect it to capture the connectivities in a more
global sense, beyond local interactions, taking into account
the underlying manifold structure of the data.

3.3 Complexity
We now comment on the time and space complexity of

our algorithm. The most complex step in the greedy proce-
dure for maximizing Ωk(S) is computing the smallest eigen-
pair of (Lk)Sc . This can be accomplished using an iterative
Rayleigh-quotient minimization based algorithm. Specifi-
cally, the locally-optimal pre-conditioned conjugate gradi-
ent (LOPCG) method [14] is suitable for this approach.
Note that (Lk)Sc can be written as ISc,V .L.L . . . L.IV,Sc ,
hence the eigenvalue computation can be broken into atomic

matrix-vector products: L.x. Typically, the graphs encoun-
tered in learning applications are sparse, leading to efficient
implementations of L.x. If |L| denotes the number of non-
zero elements in L, then the complexity of the matrix-vector
product is O(|L|). The complexity of each eigen-pair com-
putation for (Lk)Sc is then O(k|L|r), where r is a constant
equal to the average number of iterations required for the
LOPCG algorithm (r depends on the spectral properties of
L and is independent of its size |V|). The complexity of the
label selection algorithm then becomes O(k|L|mr), where
m is the number of labels requested.

In the iterative reconstruction algorithm, since we use
polynomial graph filters (Section 2.5), once again the atomic
step is the matrix-vector product L.x. The complexity of
this algorithm can be given as O(|L|pq), where p is the order
of the polynomial used to design the filter and q is the av-
erage number of iterations required for convergence. Again,
both these parameters are independent of |V|. Thus, the
overall complexity of our algorithm is O(|L|(kmr + pq)). In
addition, our algorithm has major advantages in terms of
space complexity: Since, the atomic operation at each step
is the matrix-vector product L.x, we only need to store L
and a constant number of vectors. Moreover, the structure
of the Laplacian matrix allows one to perform the afore-
mentioned operations in a distributed fashion. This makes
it well-suited for large-scale implementations using software
packages such as GraphLab [16].

3.4 Prediction Error and Number of Labels
As discussed in Section 2.5, given the samples fS of the

true graph signal on a subset of nodes S ⊂ V, its estimate
on Sc is obtained by solving the following problem:

f̂(Sc) = USc,Kα∗ where, α∗ = arg min
α

�US,Kα− f(S)�
(26)

Here, K is the index set of eigenvectors with eigenvalues less
than the cut-off ωc(S). If the true signal f ∈ PWωc(S)(G),
then the prediction is perfect. However, this is not the case
in most problems. The prediction error �f − f̂� roughly
equals the portion of energy of the true signal in [ωc(S),λN ]
frequency band. By choosing the sampling set S that max-
imizes ωc(S), we try to capture most of the signal energy
and thus, reduce the prediction error.

An important question in the context of active learning is
determining the minimum number of labels required so that
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Figure 3: Cumulative distribution of energy in the GFT coefficients of one of the class membership functions pertaining to
the three real-world dataset experiments considered in Section 5. Note that most of the energy is concentrated in the low-pass
region.
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Sampling Theory for Graph Signals

Sampling theorem: bandwidth ω ⇔ sampling rate for unique representation

Reconstruction
Bandlimited signal

Sampling theory for graph signals:

Maximum
given

,P1: Smallest
given

,P2: Estimate
given

,P3:
,
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Relevance of Sampling Theory to Active SSL

Criterion function

Cut-off frequency for 
given sampling set

Select points to 
label based on 

criterion function

Choose sampling set 
that maximizes 

cut-off frequency

Predict unknown 
labels from known

Reconstruct 
bandlimited signal 

from sample values

   

Active Semi-supervised Learning

Graph Signal Sampling

Class labels

Bandlimited 
signals
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P1: Cut-off Frequency

How “smooth” the label set information have to be to reconstruct from S?

Condition for unique sampling of PWω(G ) on S
Let L2(Sc) = {φ : φ(S) = 0}. Then, we need PWω(G) ∩ L2(Sc) = {0}.

Sampling Theorem

f can be perfectly recovered from f(S) iff

ω(f) ≤ ωc(S)
4
= inf

φL2(Sc )

ω(φ)

I Cut-off frequency = smallest bandwidth that a φ ∈ L2(Sc) can have.
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P1: Computing the Cut-off Frequency for Given S

Approximate bandwidth of a signal

ωk(f)
4
=

(
f>Lk f

f>f

)1/k

, where k ∈ Z+

I Monotonicity: ∀f, k1 < k2 ⇒ ωk1 (f) ≤ ωk2 (f).
I Convergence: limk→∞ ωk(f) = ω(f).

Minimize approximate bandwidth over L2(Sc) to estimate cut-off frequency

Ωk (S)
4
= min
φ∈L2(Sc )

ωk (φ) = min
φ:φ(S)=0

(
φTLkφ

φTφ

)1/k

=

(
min
ψ

ψT (Lk )Scψ

ψTψ︸ ︷︷ ︸
Rayleigh quotient

)1/k

Let {σ1,k , ψ1,k} → smallest eigen-pair of (Lk)Sc .

Estimated cutoff frequency Ωk(S) = (σ1,k)1/k ,

Corresponding smoothest signal φopt
k (Sc) = ψ1,k , φ

opt
k (S) = 0.
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P2: Sampling Set Selection

I Optimal sampling set should maximally capture signal information.

I Sopt = arg max|S|=m Ωk(S)→ combinatorial!

I
dλk

α(t)

dt(i)

∣∣∣
t=1S

≈ α(φopt
k (i))2.

Greedy algorithm

S ← S ∪ v , where v = arg maxj(φ
opt(j))2
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Connection with Active Learning

I Cut-off function Ωk(S) ≡ variation of smoothest signal in L2(Sc).

I Larger cut-off function ⇒ more variation in φopt ⇒ more cross-links.

Intuition

Unlabeled nodes are strongly connected to labeled nodes!
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P3: Label Prediction as Signal Reconstruction

I C1 = {x : x(S) = f(S)} and C2 = PWω(G).

I We need to find a unique f ∈ C1 ∩ C2 ⇒
sampling theorem guarantees uniqueness.

Projection onto convex sets

fi+1 = PC2 PC1 fi , where f0 = [f(S)>, 0]>.

C1
fdu

C2

f1

C1 ∩ C2f0 f2

f3

I PC1 resets the samples on S to f(S).

I PC2 = Uh(Λ)U> sets f̃(λ) = 0 if λ > ω.

h(λ) =

{
1, if λ < ω
0, if λ ≥ ω

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

λ

h
(λ

)

 

 

Polynomial approx.
Exact

I PC2 ≈
∑n

i=1

(∑p
j=0 ajλ

j
i

)
uiu
>
i =

∑p
j=0 ajLj → p-hop localized

Predicted class of node n = arg maxc fc(n).
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Exact
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(∑p
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j
i

)
uiu
>
i =

∑p
j=0 ajLj → p-hop localized

Predicted class of node n = arg maxc fc(n).
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Summary of the Algorithm

Construct graph

Choose nodes to label by 
maximizing cut-off frequency

Predict labels by 
signal reconstruction

Query labels of 
chosen nodes

Input data
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Related Work

Submodular optimization:
I Optimizing “strength” of a network (Ψ-max) [Guillory and Bilmes, 2011]

I computationally complex

I Graph partitioning based heuristic (METIS) [Guillory and Bilmes, 2009]

Generalization error bound minimization:
I Minimizing generalization error bound for LLGC [Gu and Han, 2012]

I contains a regularization parameter that needs to be tuned.

Optimal experiment design:
I Local linear reconstruction (LLR) [Zhang et al., 2011]

I does not consider the learning algorithm
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Results: Toy Example

Task

Pick 8 data points for labeling.

  

Active Semi-supervised Learning Using Sampling Theory for Graph Signals

Akshay Gadde, Aamir Anis and Antonio Ortega
University of Southern California

Choose points to label Predict labels for the restData points in feature space  Construct similarity graph

1/B

B/2

Sampling rate of B allows perfect 
reconstruction of signals with 
bandwidth B/2

For graph signals, different sampling patterns 
uniquely represent signals of different bandwidths.

For given budget, choose  a sampling pattern that 
can represent signals of maximum bandwidth.

Problem

Methodology
Extending Nyquist Shannon sampling theory to signals on graphs

ProposedLLGC boundLLRΨ-max

I 4 data points picked from each circle.

I Maximally separated points within one circle.

I Maximal spacing between selected data points in different circles.
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Results: Real Datasets
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Random
LLGC Bound
METIS
LLR
Proposed

I USPS: handwritten digits

I xi = 16× 16 image

I number of classes = 10

I K -NN graph with K = 10

I wij = exp

(
−
‖xi−xj‖

2

2σ2

)
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I ISOLET: spoken letters

I xi ∈ R617 speech features.

I number of classes = 26

I K -NN graph with K = 10

I wij = exp

(
−
‖xi−xj‖

2

2σ2

)
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I Newsgroups: documents

I xi ∈ R3000 tf-idf of words

I number of classes = 10

I K -NN graph with K = 10

I wij =
x>i xj
‖xi‖‖xj‖
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Results: Effect of k

Larger k ⇒ better estimate of cut-off frequency is optimized.
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(b) Isolet

1 2 3 4 5 6 7 8 9 10
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Percentage of labelled data

A
c
c
u

ra
c
y

 

 

k = 4

k = 6

k = 8

(c) 20 newsgroups

Figure 6: Effect of k on classification accuracy of the proposed method. Plots show the average classification accuracy for
different percentages of labelled data.
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Figure 3: Cumulative distribution of energy in the GFT coefficients of one of the class membership functions pertaining to
the three real-world dataset experiments considered in Section 5. Note that most of the energy is concentrated in the low-pass
region.

term is expected to be negligible as compared to the first
one due to differencing, and we get

xtLx ≈
�

j∈Sc

�
pj

dj

�
x2

j , (24)

where, pj =
�

i∈S wij is defined as the “partial out-degree”
of node j ∈ Sc, i.e., it is the sum of weights of edges crossing
over to the set S. Therefore, given a current selected S, the
greedy algorithm selects the next node, to be added to S,
that maximizes the increase in

Ω1(S) ≈ inf
||x||=1

�

j∈Sc

�
pj

dj

�
x2

j . (25)

Due to the constraint ||x|| = 1, the expression being mini-
mized is essentially an infimum over a convex combination
of the fractional out-degrees and its value is largely deter-
mined by nodes j ∈ Sc for which pj/dj is small. In other
words, we must worry about those nodes that have a low
ratio of partial degree to the actual degree. Thus, in the
simplest case, our selection algorithm tries to remove those
nodes from the unlabeled set that are weakly connected to
nodes in the labeled set. This makes intuitive sense as, in
the end, most prediction algorithms involve propagation of
labels from the labeled to the unlabeled nodes. If an unla-
beled node is strongly connected to various numerous points,
its label can be assigned with greater confidence.

Note that using a higher power k in the cost function,
i.e., finding Ωk(S) for k > 1 involves xLkx which, loosely
speaking, takes into account higher order interactions be-
tween the nodes while choosing the nodes to label. In a
sense, we expect it to capture the connectivities in a more
global sense, beyond local interactions, taking into account
the underlying manifold structure of the data.

3.3 Complexity
We now comment on the time and space complexity of

our algorithm. The most complex step in the greedy proce-
dure for maximizing Ωk(S) is computing the smallest eigen-
pair of (Lk)Sc . This can be accomplished using an iterative
Rayleigh-quotient minimization based algorithm. Specifi-
cally, the locally-optimal pre-conditioned conjugate gradi-
ent (LOPCG) method [14] is suitable for this approach.
Note that (Lk)Sc can be written as ISc,V .L.L . . . L.IV,Sc ,
hence the eigenvalue computation can be broken into atomic

matrix-vector products: L.x. Typically, the graphs encoun-
tered in learning applications are sparse, leading to efficient
implementations of L.x. If |L| denotes the number of non-
zero elements in L, then the complexity of the matrix-vector
product is O(|L|). The complexity of each eigen-pair com-
putation for (Lk)Sc is then O(k|L|r), where r is a constant
equal to the average number of iterations required for the
LOPCG algorithm (r depends on the spectral properties of
L and is independent of its size |V|). The complexity of the
label selection algorithm then becomes O(k|L|mr), where
m is the number of labels requested.

In the iterative reconstruction algorithm, since we use
polynomial graph filters (Section 2.5), once again the atomic
step is the matrix-vector product L.x. The complexity of
this algorithm can be given as O(|L|pq), where p is the order
of the polynomial used to design the filter and q is the av-
erage number of iterations required for convergence. Again,
both these parameters are independent of |V|. Thus, the
overall complexity of our algorithm is O(|L|(kmr + pq)). In
addition, our algorithm has major advantages in terms of
space complexity: Since, the atomic operation at each step
is the matrix-vector product L.x, we only need to store L
and a constant number of vectors. Moreover, the structure
of the Laplacian matrix allows one to perform the afore-
mentioned operations in a distributed fashion. This makes
it well-suited for large-scale implementations using software
packages such as GraphLab [16].

3.4 Prediction Error and Number of Labels
As discussed in Section 2.5, given the samples fS of the

true graph signal on a subset of nodes S ⊂ V, its estimate
on Sc is obtained by solving the following problem:

f̂(Sc) = USc,Kα∗ where, α∗ = arg min
α

�US,Kα− f(S)�
(26)

Here, K is the index set of eigenvectors with eigenvalues less
than the cut-off ωc(S). If the true signal f ∈ PWωc(S)(G),
then the prediction is perfect. However, this is not the case
in most problems. The prediction error �f − f̂� roughly
equals the portion of energy of the true signal in [ωc(S),λN ]
frequency band. By choosing the sampling set S that max-
imizes ωc(S), we try to capture most of the signal energy
and thus, reduce the prediction error.

An important question in the context of active learning is
determining the minimum number of labels required so that
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Conclusion and Future Work

I Application of graph signal sampling theory to active SSL

I Class labels ⇒ bandlimited graph signals
I Choosing nodes ⇒ Best sampling set selection
I Predicting unknown labels ⇒ Signal reconstruction from samples

I Proposed approach gives significantly better results.

I Future work:
I Approximate optimality of proposed sampling set selection.
I Robustness against noise
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Thank you!
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Label Complexity

I Let f̂ be the reconstruction of f obtained from its samples on S.

I What is the minimum number of labels required so that ‖f − f̂‖ ≤ δ?

Smoothness of a signal

Let Pθ be the projector for PWθ(G). Then γ(f) = min θ s.t. ‖f − Pθf‖ ≤ δ.

Theorem

The minimum number of labels |S| required to satisfy ‖f − f̂‖ ≤ δ is greater
than p, where p is the number of eigenvalues of L less than γ(f).
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