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Motivation and Problem Definition

» Unlabeled data is abundant. Labeled data is expensive and scarce.

» Solution: Active Semi-supervised Learning (SSL).

> Problem setting: Offline, pool-based, batch-mode active SSL via graphs

Data points in Construct similarity Choose points Predict labels for
feature space graph to label the rest

1. How to predict unknown labels from the known labels?

2. What is the optimal set of nodes to label given the learning algorithm? J
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Graph Signal Processing

v

Graph G = (V, &) with N nodes

> nodes = data points; wj;: similarity between i and j.

v

Adjacency matrix W = [w;]nxn.

» Degree matrix D = diag{zj wj }.
Laplacian L =D — W.

Normalized Laplacian £ = D~*/2LD~%/2,

v

v
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Graph Signal Processing

v

Graph G = (V, &) with N nodes

> nodes = data points; wj;: similarity between i and j.

v

Adjacency matrix W = [w;]nxn.

» Degree matrix D = diag{zj wj }.
Laplacian L =D — W.

Normalized Laplacian £ = D~*/2LD~%/2,

v

v

v

Graph signal f : V — R, denoted as f € R".

v

Class membership functions are graph signals.
crn L, if node j is in class ¢
FU) = { 0, otherwise
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Notion of Frequency for Graph Signals

Spectrum of £ provides frequency interpretation:
> A\« € [0,2]: graph frequencies.

> uy: graph Fourier basis.

o=m/4x1 w=n/4x4 o=7/4x7
w=m/4x0 I I I
r=027 =132 A=159

@m@%@@

> Fourier coefficients of f: £(\;) = (f, u;).
» Graph Fourier Transform (GFT):

f=U'rf.
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Bandlimited Signals on Graphs

> w-bandlimited signal: GFT has support [0, w].
» Paley-Wiener space PW,,(G): Space of all w-bandlimited signals.

> PW,,(G) is a subspace of RV.
> w1 <wp = PW,, (G) C PW,,(G).

fN

» Bandwidth of a signal:

w(f) = arg)r"naxf()\) st. [f(\)] >0

1]
A ,\kI

)‘m ax A
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Bandlimited Signals on Graphs
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» Bandwidth of a signal:

w(f) = arg;’naxf()\) st. [f(\)] >0

1]
A A T, Amax A

w

» Class membership functions can be approximated by bandlimited graph

signals.
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Sampling Theory for Graph Signals

Sampling theorem: bandwidth w < sampling rate for unique representation

Bandlimited signal f (n) Reconstruction

Down-sampling

- —n/M x/M T
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Sampling Theory for Graph Signals

Sampling theorem: bandwidth w < sampling rate for unique representation

Bandlimited signal f(n)

- —n/M x/M T

Reconstruction

Down-sampling

Sampling theory for graph signals:

P1: Maximum w,
givenS

fe PW,(G)
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P2: Smallest S,
given w

P3: Estimate f,
given w, f(S)

Reconstruction % f
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Relevance of Sampling Theory to Active SSL

Active Semi-supervised Learning

. ! Select points to Predict unknown
Class labels Criterion function E:} label based on E:> labels from known
criterion function

- Cut-off frequency for Choose sampling set Reconstruct
Bar!dllm]ned given sarﬂplingyset :> that maximizes bandlimited signal
signals cut-off frequency from sample values

Graph Signal Sampling
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P1: Cut-off Frequency

How “smooth” the label set information have to be to reconstruct from S?

fe PW,(G) o:p(S)=0 g:g(S) =1f(S)
+ =
S S S
S S S
Condition for unique sampling of PW,,(G) on S
Let Lo(S°) = {¢: ¢(S) = 0}. Then, we need PW,,(G) N L2(S°) = {0}. J
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P1: Cut-off Frequency

How “smooth” the label set information have to be to reconstruct from S?

fe PW,(G)
Condition for unique sampling of PW,,(G) on S
Let Lo(S°) = {¢: ¢(S) = 0}. Then, we need PW,,(G) N L2(S°) = {0}. J

Sampling Theorem

St oELy(8)w(o _
© f can be perfectly recovered from f(S) iff
— > () <wel(S) 2 inf w(e)
w we(S)= inf w
rwed e —ue) = s
» Cut-off frequency = smallest bandwidth that a ¢ € L»(S¢) can have. 2 USC
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P1: Computing the Cut-off Frequency for Given &
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P1: Computing the Cut-off Frequency for Given &

Approximate bandwidth of a signal =

T pke Lk
wi(f) o (LS , where k € Z*

frf

e )\max by
wif) waf)  wo(f) =w(f)
» Monotonicity: Vf, ki < ko = wi, (f) < wi, (F).
» Convergence: limy_ o wi(f) = w(f).
#USC
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P1: Computing the Cut-off Frequency for Given &

Approximate bandwidth of a signal

T pke Lk
we(f) 2 <%> , where k € Z*

f)

I B B

wif) wa(f)  weolf) = w(f)
» Monotonicity: Vf, ki < ko = wi, (f) < wy, (F)
» Convergence: limy_ o wi(f) = w(f)

Minimize approximate bandwidth over L>(S€) to estimate cut-off frequency

. . ¢T£k¢ 1/k
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P1: Computing the Cut-off Frequency for Given &

Approximate bandwidth of a signal

f)

T pk
we(f) 2 (%) , where k € Z*

» Monotonicity: Vf, ki < ko = wi, (f) < wy, (F)
» Convergence: limy_ o wi(f) = w(f)

Minimize approximate bandwidth over L>(S€) to estimate cut-off frequency

- (eTero\YE (TR )
(8) =, min,, (@) mé?o( ¢T¢> il A
[ —

YTy

Rayleigh quotient
Let {01k, %14} — smallest eigen-pair of (L£L¥)sc

Estimated cutoff frequency Q4(S) = (a1.4)"%,
Corresponding smoothest signal ¢7*(S) = ¢1 .k, ¢ (S) =
PCSJ/IMPS 2014
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P2: Sampling Set Selection

» Optimal sampling set should maximally capture signal information.

> Sopt = arg max| g, (S) — combinatorial!
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P2: Sampling Set Selection

» Optimal sampling set should maximally capture signal information.
> Sopt = arg max| g, (S) — combinatorial!
» Greedy gradient-based approach.

> Start with S = {0}.

> Add nodes one by one while ensuring maximum increase in Q(S).

binary relaxation

Tck T pk T s
(Q(8))F = min $ L9 . min <x f X, X dlag(t)x>

_
o(S)=0 ¢ x xTx xTx = Ak (t)]e=15

t=1s

relax the constraint

axE (0
at(i)

L a(e (7).

t=1
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P2: Sampling Set Selection

» Optimal sampling set should maximally capture signal information.
> Sopt = arg max| g, (S) — combinatorial!
» Greedy gradient-based approach.

> Start with S = {0}.

> Add nodes one by one while ensuring maximum increase in Q(S).

binary relaxation

T pk T pk T1:
k. 9 L% . [x L% x ' diag(t)x N
(Q2(5)) = i s ~m)gn< T e . = A (t)|o=1s
=1s
relax the constraint

dAk (t .

|y, SO
Greedy algorithm
S+ SUv, where v = arg max;(¢°(j)) J
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Connection with Active Learning

» Cut-off function Qx(S) = variation of smoothest signal in L,(S¢).

> Larger cut-off function = more variation in ¢op: = more cross-links.

Intuition
Unlabeled nodes are strongly connected to labeled nodes! J
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P3: Label Prediction as Signal Reconstruction

> C1 = {x:x(8) =f(S)} and C> = PW,,(G).
» We need to find a unique f € C1 N Cy =
sampling theorem guarantees uniqueness.

Projection onto convex sets J

f,'+1 = Pc2 Pclf,', where fo = [f(S)T,O]T
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P3: Label Prediction as Signal Reconstruction

> C1 = {x:x(8) =f(S)} and C> = PW,,(G).
» We need to find a unique f € C1 N Cy =
sampling theorem guarantees uniqueness.

Projection onto convex sets
fi1 = Pc,Pe,fi, where fo = [f(S)7,0]". J

> P¢, resets the samples on S to f(S).

> Pc, = Uh(A)UT sets f(\) = 0 if A > w.

(1, ifia<w
h(A)_{o, ifA>w
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P3: Label Prediction as Signal Reconstruction

> C1 = {x:x(8) =f(S)} and C> = PW,,(G).
» We need to find a unique f € C1 N Cy =
sampling theorem guarantees uniqueness.

Projection onto convex sets
fi1 = Pc,Pe,fi, where fo = [f(S)7,0]". J G
> P¢, resets the samples on S to f(S).
T - 5 —Polynomial approx]
> Pc, =Uh(A)U " sets f(A) =0 if A > w. | ~Exact
< o5
(1, fA<w =
h(A)_{o, if A > w ]
0% 05 1 15 2

> Pe, = >0, (E,"):o aj)\{-‘) uu/ = Py a; £/ — p-hop localized

Predicted class of node n = arg max_f°(n). ) =USC
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Summary of the Algorithm

Input data

".’Input: G = {V, E}, L, target size m, parameter k € Z+’~~._.._.
Initialize: S = {0} i
while |S| <m

opt

For S, compute the smoothest signal ¢;"" € Ly(S°)

maximizing cut-off frequency

Query labels of
chosen nodes

]

[ Predict labels by ]

[ Choose nodes to label by

v arg max; [(¢7"(i))?]
S+ Suwv

end while

’ POCS iteration: fi11 = P¢, Pe,f;

Label of node n = arg max, £¢(n)

signal reconstruction
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Related Work

Submodular optimization:
» Optimizing “strength” of a network (W-max) [Guillory and Bilmes, 2011]

> computationally complex

» Graph partitioning based heuristic (METIS) [Guillory and Bilmes, 2009]

Generalization error bound minimization:
» Minimizing generalization error bound for LLGC [Gu and Han, 2012]
> contains a regularization parameter that needs to be tuned.

Optimal experiment design:
> Local linear reconstruction (LLR) [Zhang et al., 2011]
> does not consider the learning algorithm
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Results: Toy Example

Task
Pick 8 data points for labeling. J
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Results: Toy Example

Task
Pick 8 data points for labeling. J

9%0%%0%00&0
LLGC bound Proposed

8s *®
'0900,040°a000

W-max

» 4 data points picked from each circle.
» Maximally separated points within one circle.
» Maximal spacing between selected data points in different circles.
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Results: Real Datasets
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»> USPS: handwritten digits > ISOLET: spoken letters > Newsgroups: documents
> x; = 16 x 16 image > x; € R speech features. > x; € R30% tfidf of words
» number of classes = 10 > number of classes = 26 » number of classes = 10
» K-NN graph with K = 10 > K-NN graph with K = 10 » K-NN graph with K = 10
2
llx; —x; 112 B lIxi=;
> w; = exp (—T > wj; = exp — ey >
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Results: Effect of k

Larger k = better estimate of cut-off frequency is optimized. J
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Conclusion and Future Work

> Application of graph signal sampling theory to active SSL
> Class labels = bandlimited graph signals

> Choosing nodes = Best sampling set selection
> Predicting unknown labels = Signal reconstruction from samples

» Proposed approach gives significantly better results.

» Future work:

> Approximate optimality of proposed sampling set selection.
> Robustness against noise

#USC

PCSJ/IMPS 2014 Active SSL using sampling theory for graph signals 18 /21



References

@ A. Anis, A. Gadde, and A. Ortega.
Towards a sampling theorem for signals on arbitrary graphs.
In ICASSP, 2014,

@ S.K. Narang, A. Gadde, and A. Ortega.
Localized iterative methods for interpolation in graph structured data.
In IEEE GlobalSIP, 2013.

@ A. Guillory and J. Bilmes.
Active semi-supervised learning using submodular functions.
In UAI, 2011.

[3 A. Guillory and J. Bilmes.
Label selection on graphs.
In NIPS. 2009.

@ L. Zhang, C. Chen, J. Bu, D. Cai, X. He, and T. Huang.
Active learning based on locally linear reconstruction.
TPAMI, 2011.

ﬁ Q. Gu and J. Han.
Towards active learning on graphs, an error bound minimization approach.
In ICDM, 2012. = USC

PCSJ/IMPS 2014 Active SSL using sampling theory for graph signals 19 /21



Thank you!
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Label Complexity

» Let f be the reconstruction of f obtained from its samples on S.

» What is the minimum number of labels required so that ||f — f|| < §7?

Smoothness of a signal
Let Py be the projector for PWy(G). Then ~(f) = mind s.t. ||f — Pof|| < 4. J

Theorem

The minimum number of labels |S| required to satisfy ||f — f|| < & is greater
than p, where p is the number of eigenvalues of L less than ~y(f).
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